浅析学好计量经济学的关键问题
论文关键词:计量经济学;模型;假定;参数枯计;检验
论文摘要:计量经济学是一门涉及面广、计算复杂的较难学的课程。从学这门课应具备的知识条件入手。分析了学好的关键问题是:要把握线性回归模型的几个基本假定,要学会建模,要懂得几种参数估计的方法,还要明白模型检验的意义。
计量经济学是经济学领域内的一门应用性学科。它是以统计知识、数学方法为基础,以一定的经济理论为指导,以计算机为手段,通过建立计量经济模型,考察和研究经济社会中各种经济变量之间的数量关系,预测经济发展的趋势,检验经济政策效果的一门非常具有实用价值的学科。现在很多专业都开设这门课。但由于这门课涉及的知识面广、计算公式多而复杂,要求的应用手段高,所以,学生在学的过程中感到比较困难,且学的效果也不太理想。本人根据自己的教学体会,谈谈学好这门课应注意的几个关键问题。
首先.学生学这门课程必须具备以下条件:统计学、数学和经济学知识以及计算机技术。且缺一不可。
(一)对统计学而言,为了测定经济变量之间的数量关系,计量经济研究过程中采用了统计学的分析方法,如:计量经济学模型的统计检验、参数估计的方法以及建立模型所需要的统计数据资料的搜集等都离不开统计方法。特别是统计数据的搜集、整理和分析。因此,统计学就成为计量经济学研究的基础。统计资料的准确性、时效性和系统性就成为计量经济学模型建立的好坏、参数估计代表性大小的影响因素。
(二)对经济学而言,经济学是计量经济学的理论基础,因为计量经济学研究的主题是经济现象发展变化的规律,计量经济模型描述的是经济变量之间的数量关系,这就决定了计量经济研究必须以经济理论和经济运行机制作为建立模型的理论基础。如消费函数和投资函数的建立,就是以不同的消费理论和投资理论为前提的。此外,计量经济研究的结论反过来可以验证有关经济理论的正确与否。
(三)对数学而言,为了将经济理论和客观事实有机的结合起来,需要采用适当的方法。由于计量经济学研究的主要是多个因素之间静态或动态的随机关系,所以需要引人数理统计以及微积分与矩阵等理论方法,这些方法成为计量经济研究的建模工具。如利用最小二乘法估计模型中的参数就利用到微积分中的极值原理,在多元线性回归模型中要用矩阵理论推导参数的性质,在搜集资料时要用抽样理论等。现在经济学研究的数学化和定量化是经济学科学化的标志。这种科学化推动了经济学领域的发展,如微分学与边际理论,优化方法与最优配置理论,所以,数学是计量经济分析的一个基本工具,用数学方法去思考和描述经济问题和政策,这是计量经济学的关键。
(四)对计算机技术而言,社会发展到今天,计算机已普遍运用到定量分析中,定量分析是依据数理统计理论的发展而发展起来的。它包括系统论、信息论和控制论,其多数方法复杂,计算工作量大,这就需要利用计算机软件来解决问题。
所以,要想学好计量经济学,学生就必须要有厚实的统计学基础,扎实的数学功底和熟练的计算机应用技术。否则,分析问题时将会很困难,甚至分析不下去,即使分析出来,结论和实际也会有很大偏差或者根本和实际经济运行规律相违。
其次,学生学这门课必须注意把握线性回归模型的几个基本假定。
(一)几个基本假定是运用最小二乘法的前提条件。对于线性回归模型,模型估计的任务是用回归分析的方法估计模型的参数,常用的方法是普通最小二乘法,简称ors法,为保证参数估计量具有良好的性质,就需对模型提出几个假定。如果实际模型满足这些假定,ors法就是一种适用的方法,如果实际模型不满足这些假定,ors法就不再适用,这就需要发展其它方法来估计模型。因此它是运用ors法的前提。
几个基本假定是:1、假定解释变量xi是确定性变量,不是随机变量,且 之间互不相关。( 是
第i个解释变量);2、零均值假定,即 ,其中 为随机误差项;3、同方差假定,即
,其中为方差 ;4、无自相关假定,即COV ;5、解释变量与随机误差项之间互不相关
假定,即 ;6、随机误差相服从均值为0,方差为 的正态分布假定,即 。
(二)几个基本假定是贯穿计量经济学的一条主线。计量经济学研究的一个主要任务是对模型进行
计量经济检验,目的是检验计量经济学的性质。一般是检验模型中随机误差项是否存在异方差和序列
相关的问题、解释变量是否存在多重共线性问题以及解释变量是否是随机变量,这些问题都是根据这
几个基本假定而来的,即如果违背了同方差假定,模型就存在异方差,即 ;如果违背
解释变量 之间互不相关假定,模型就存在多重共线性问题,即 0;如果违背随机误差项在
不同样本点之间互不相关假定,模型就存在自相关问题,即 0;如果违背解释变量是确定性
变量的假定,那么模型就存在解释变量是随机变量的问题。每一个问题都有它产生的原因,会造成不
同的后果,因此,就有不同的模型检验、处理和估计的方法,所以学生要特别注意把握这几个基本假
定。