广东省高等教育对经济增长贡献率的测算
来源:岁月联盟
时间:2013-02-14
关键词:高等教育 广东 经济增长率 贡献
高等教育不仅对经济社会的发展有着直接的贡献,而且可以通过提高劳动者素质达到对经济增长的贡献。因此,测算广东省高等教育对经济增长的贡献率,对于处理好广东省高等教育发展与经济增长的关系具有重要的意义。
一、计算高等教育对经济增长贡献率的模型选择
在定量分析中,柯布—道格拉斯(C-D)生产函数是国内外众多估算方法的基础,本文也主要在柯布—道格拉斯(C-D)生产函数的基础上进一步细分教育投入和经济产出之间的函数关系。
柯布—道格拉斯(C-D)生产函数是由美国数学家柯布和经济学家道格拉斯根据历史统计资料,研究二十世纪处在研究美国制造业劳动和资本对产出的作用时得出一个生产函数,即著名的柯布—道格拉斯(C-D)生产函数:
Y=AKαLβ (1)
这个生产函数可以表述为:假设土地数量没有变化,导致经济增长的因素抽象为资本K、劳动L和技术进步率A,K、L可以相互替代,且能以可变的比例组合,又假设经济发展处于完全竞争的市场经济条件下,生产要素都以其边际产品作为报酬,规模报酬保持不变,那么在时间t范围内变化的中性技术进步的产出增长模型可以被构造为:Yt=At KtαLtβ (2)
其中,Yt是第t期经济产出量,用GDP表示; At为第t期技术水平,一般作为常数;Kt为第t期的物质资本存量;Lt为第t期人力资本存量;α是资本的产出弹性系数,β是劳动的产出弹性系数,而且α﹥0,β﹥0,α﹢β=1 。
人力资本理论认为教育能提高劳动力的质量,也就等于使初始劳动力投入量成倍增加,因此可以将劳动投入量细化为初始劳动力L0与教育投入E的乘积,于是公式(1)就可以转化为: Yt=AtKαt(L0tEt)β (3)
这同时和新经济增长理论的代表人物卢卡斯(Robert E Lucas)于1988年提出的内生经济增长模型Y=Kα(Hl)1-α的思想基本一致(《经济增长导论》,2002)对公式(3)两边取自然对数后再求时间t的全导数,然后再用差分方程近似代替微分方程得到方程:y=a+αk+βl0+βe(4)
其中,y表示一定时期内经济的年均增长率,a为社会技术进步的水平增长率,α表示产出的资本投入弹性,K为资本投入的年均增长率,β表示产出的劳动投入弹性,l0代表初始劳动投入的年均增长率,e代表教育投入的年均增长率。因此,估算教育对经济增长率的贡献可表示为:
Re=(ye/y)×100%=(βe/y)×100% (5)
公式(5)是目前国际广泛采用的计算教育对经济增长贡献率的模型,它表示教育这个要素投入所带来的那部分国民产值的增长率占国民产值总增长率的比率。在实际计算过程中,教育投入的年均增长率e也可以表示教育综合指数的年均增长率。在此基础上进一步求出广东高等教育对经济增长的贡献。
二、劳动的产出弹性系数β的测算
在本文的模型中,β的系数值对模型的影响较大。本文主要根据广东省2000~2009年的统计数据,采用时间序列回归分析的方法,在柯布—道格拉斯生产函数Yt=AtKtαLtβ 的基础上 ,通过 两边取自然对数构造线形回归模型:lnYt=lnAt+αlnKt+βlnLt,设α+β=1。为避免出现序列自相关和多重共线形问题,在上述生产函数的基础上,构造一阶差分方程: lnYt- lnYt-1=C0+α(lnKt-lnKt-1)+β(lnLt-lnLt-1)+θ,设α+β=1。这里θ为随机误差项,假设其均值为0,且自变量的一阶差分与随机误差项无关。
2000年固定资产投资价格指数(1978=1),实际投资额(1978价格),实际资本存量(1978年价格)来自张军、吴桂英、张吉鹏,中国省际物质资本存量估算:1952-2000,经济研究,2004年第10期,P42-43
2001-2008年的固定资产投资价格指数(1978=1),实际投资额(1978年价格),实际资本存量(1978年价格):根据张军等(2004)采用的方法计算得出。
运用SPSS软件求出β的值,其中,Y表示广东省2000-2009年实际GDP,参见表1;K表示广东2000-2008年折旧后的资本存量,参见表2;L表示广东省2000-2009年从业人数,参见表3。
将广东省历年GDP对数的一阶差分lnYt- lnYt-1、实际资本存量对数的一阶差分lnKt-lnKt-1、从业人数对数的一阶差分lnLt-lnLt-1,代入一阶差分方程:lnYt- lnYt-1=C0+α(lnKt-lnKt-1)+β(lnLt-lnLt-1),运用SPSS软件进行回归分析。得到以下分析结果:
由以上回归结果可以看出,建立的广东省劳动投入的柯布—道格拉斯生产函数的回归模型是成立的。从回归结果得到广东省的的劳动的投入弹性β为0.636。
三、 计算广东教育投入的年均增长率e和高等教育的年均增长率eh
第1步,分别计算2000年、2008年广东从业人员的人均教育综合指数
(一)用教育综合指数代表由于教育程度的提高而带来的劳动投入量,需要确定劳动简化率
关于劳动简化率的确定是个复杂的问题,目前主要有三种方法:西方的丹尼森和麦迪逊的“工资收入法”(又称“丹尼森系数法”)、前苏联的“复杂劳动简化法”(又称“劳动质量修正法”)以及中国学者的“修正的劳动简化法”。各种方法测算的结果差距比较大,仅中国学者在采用修正的额劳动简化法时就计算出四种(分别根据工资法、教育年限法、工作年总课时数法和劳动生产率法)等不同结果。
丹尼森“工资收入法”在中国使用时,学者们一般是部分地考虑中国的实际情况,采用不同文化程度劳动者的平均工资收入差别确定不同文化程度的劳动者的劳动生产率,然后与经验值相结合做不同程度的折算,得到的结果虽然有差别,但波动范围不大,崔玉平(1999)按三级(初等、中等和高等)得到劳动简化系数为:1、1.4、2;李洪天(2001)按四级(小学、初中、高中和大学)计算得到劳动简化率分别为:1、1.2、1.4和2;杭永宝(2007)按五级(小学、初中、高中、大专、本科以上高等教育)得到劳动简化系数为1、1.28、1.38、1.81、2.2。由于目前广东的研究生所占比例还比较小,可以把他们归入本科学历,所以本文根据综合考虑采用杭永宝的劳动简化系数。
(二)计算2000年、2008年广东省人均受教育年限数据
根据模型Re=ye/y×100%=βe/y×100%的要求,需要用一定时间段内的数据来反映增长率,又依据“教育综合指数”的内涵,需要人均受各级教育年数来计算教育综合指数的年均增长率,考虑到数据的权威性和可获取性以及可比较性,本人选取《广东省2000年人口普查资料》和《中国劳动统计年鉴(2010)》中的数据。