热水供热网水锤分析
摘要 本文对热水供热网的水锤现象和产生原因作了分析;建立了热网水锤分析的数理模 型,从描述水锤基本的偏微分方程组出发,使用特征能法对热水供热网进行水锤数值.本文也考虑了有蒸汽空泡溃灭水锤的计算问题.根据建立的水锤分析数理模型,对北京某大型热水供热网进行了七种瞬变工况的水锤分析,计算结果从物理上看合理、正确,与委托国外某公司对该系统计算的结果符合得较好,在"汽穴"发生后,计算结果比国外的更合理. 关键词 水锤 供热网 集中供热系统 | |
0 前言 |
图陵8至图11是对该热水供热网可能出观的七种瞬变工况的部分曲线。
(1)主供水管线上阀门在幻213秒内关闭
图3给出了主供水管线上阀门前后压力随时间的变化曲线.在阀门关闭时,阀门前(虚线表示)出现正水锤,阀门后(实线表示)出现负水锤。计算给果曲线趋势是符合物理概念的。阀门前压力上升可达到将近450米水柱,阀门后力降到饱和汽化压力,在管道内形成气穴,在275秒时,空泡溃灭,导致30米水柱的瞬间压力增加,之后再一次出观气穴,管道内气穴体积的变化曲线如图4所示。
(2)主回水管线上阀门在213秒内关闭
图5是阀门前后的压力曲线,从这个图看出回水管线上阀门后(实线表示)压力降低到了水的汽化压力,管道中形成气穴,并且空泡溃灭又导致压力的上升,回水阀后的压力上升达到240米水柱.阀门前(虚线表示)出现正水锤,压力上升值达到5o0米水柱.
(8)主供水管线上阀门在213秒内关闭,约150秒各泵站停止运行。
图6和图7分别给出主供水管线上阀门关闭,全部泵停止运行,阀门前和阀门后的压力曲线.结果表明采取停止泵的运行来控制关闭主供水管线上的阀门引起的水锤压力具有很好的效果,阀门前压力仅上升到180米水柱,阀门后不会产生气穴。
(4)主循环水泵突然故障,同时定压系统迅速动作,努力维持20米水柱的水头。
图8是在无旁通管路时,泵前后的压力曲线。由于定压系统的作用,泵入口压力(实线表示)在 20米水柱附近振荡,逐渐衰减,最后回复到 20米水柱的压力。泵出口压力(虚线表示)降低,最后保持在55米水柱,这意味着供热管线上位置较高的地方将会形成空穴。
(5)主循环泵突然故障,泵设有旁通管路,故障发生时,切断补水。
图9是循环泵进出口的压力曲线,结果表明在循环水泵的出水管路和进水管路之间连接旁通管路的办法,限制了泵出口管路中)中压力的下降,管网中既不产生气穴,也不出现超压现象。
(6)两座加压泵站同时发生事故
图10是热电厂最近位置最高点回水管中的压力曲线。结果表明两座加压泵站同时发生事故时,气穴不可避免地在回水管中位置最高点产生,热电厂附近回水管线中会出现一7米水柱的负压。
(7)全部热用户热量要求减少到85%
图11是离热电厂"最近的热用户的进出口压力曲线。热用户的进口压力(虚线表示)从约138能米水柱上升到193米水柱,热用户出口压力(实线表示)从约58米水柱降低到10米水水柱,没有降到水的汽化压力。工况7的计算结果表明,各个热用户流量的调节是一种相对无害的动态效应,供热管线是安全的。
3.3 结果分析
为了考察热水供热网水锤计算结果是否正确,将上面的水锤分析曲线从物理上作了分析,结果是合理的,并且与委托国外某公司对该系统计算的结果进行了比较,二者的大部分工况曲线趋势一致,数据吻合的比较好,在"空穴"发生后,计算结果比国外的更合理,例如国外某公司对工况2的计算曲线阀门的压力低于汽化压力,这在物理概念上是不正确的,是不可能的,这仅表明管道中有气穴产生,故其计算结果是错误的;而本文对工况2的计算结果和理论概念上的分析是一致的,说明计算结果是合理的。
4 结论
4.1主循环水泵发生故障,有可能在供热管线上位置最高点产生气穴,当主循环水泵重新启动时,会产生空泡溃灭水锤。
4.2 回水管线上加压泵都发生故障时,有可能在回水管线上位置最高点产生气穴。
4.3在水泵的出水管路和进水管路之间连接旁通管路的办法,对控制水泵故障时的水锤压力具有很好的效果。
4.4采取在阀门完全关闭前停止泵运行的方法来控制阀门关闭引起的水锤压力具有很好的效果.
4.5 本文提供的方法和结果可以用来分析热水供热网的动态变化趋势,为系统的设计、施工及制定系统运行操作规程提供依据,对工程设计、系统运行操作有实际意义。
1. E.B.怀特,V.L. 斯特里特,瞬变流,水力电力出版社,1983。
2. A.Serwach, Simulation of Hydraulic Transients in Heating Networks, Third interna-tional Conference on Pressure Surges,1980
3. E.R 柯洛夫,热化与热力网,机械出版社,1988
4.哈尔滨建筑工程学院等,供热工程,中国建筑工业出版社,1985