定形相变材料的研制及热性能分析

来源:岁月联盟 作者:佚名 时间:2010-08-24
摘要 本工作研制了一组定形相变材料,这们分别采用不同的支撑材料,有聚乙烯、聚丙烯、橡胶等,所用芯材石蜡熔点也不同,分析了复合材料的均匀性,对定形相变材料中石虹的掺混比进行了讨论,并采用扫描显微镜、DSC差示扫描量热仪等仪器对其理化结构及热性能进行了分析。该类材料的研制成功有望成为电蓄热地板采暖用的关键材料,为开发具有特色的环保采暖方式提供帮助。
  
关键词 定形相变材料 贮能 石蜡


1 引言
  
  利用相变材料的相转变潜热或蓄冷,温度变化小、蓄能密度大,在太阳能利用、余热和废热回收及建筑采暖和空调节能等领域有着广阔应用前景[1]。传统的固液相变贮能材料在实际应用中,都需用容器封装,增加了传热时相变材料与外部传热介质间的热阻,降低了传热效率,且增加了封装成本。定形相变材料是由相变材料和高分子支撑和封装材料组成的复合贮能材料,由于高分子囊材的微封装和支撑作用,作为芯材的相变材料发生固液相变时不会流出,且整个复合材料即使在芯材熔化后也能保持原来的形状不变并且有一定的强度。该类材料有以下优点:无需封装,不泄漏,从而减小了封装成本和难度,并减小了相变材料和传热流体间热阻。该类材料在建筑暖通空调领域及建筑材料领域有着较为广阔的应用前景。
  Inaba教授[2]较早研究了高密度聚乙烯和熔点54℃的石蜡体系混成的定形相变材料的热物理性质,石蜡掺混比例为74wt%。叶宏等人[3]也对石蜡和高密度聚乙组成的定形相变材料进行了研究,他们用几种高密度聚乙烯和熔点在58℃左右的精炼和半精炼石蜡作为原料,石蜡在定形相变材料中所占比例为75wt%。法国的Xavier Py等人[4]制备了石蜡-膨胀石墨定形相变材料,并研究了体系的热物理性能,石蜡掺混比例为65wt%~95 wt%。华南理工大学的肖敏等人[5]研究了石蜡和热塑弹性体SBS组成的复合相变材料在加入石墨后热传导性能的提高,他们加入的石蜡含量在20 wt%~80 wt%范围内。定形相变材料研制中多以高密度聚乙烯、SBS或石墨为支撑材料,石蜡为相变材料,对定形相变材料的均匀性分析不够,对支撑材料类型及石蜡掺混比对定形相变材料材料性能的影响讨论不够充分。
  本工作应用不同熔点的石蜡和一些高压聚乙烯、低压聚乙烯、聚丙烯及橡胶作原料,研制出一些定形相变材料。对材料的均匀性进行了分析,并对相变材料的的掺混比进行了讨论。用DSC差示扫描量热仪和电子扫描显微镜等仪器对材料进行一些结构和热性能方面的分析研究,其中应用低压聚乙烯和石蜡共混,石蜡所占比例最高达到90wt%。
  
2 实验
  
  2.1 实验试剂
  切片石蜡,熔点48~50℃;半精炼石蜡,熔点56~58℃,58~60℃,60~62℃;精炼石蜡,58~60℃;低压聚乙烯,J-0;高压聚乙烯1L2A;高压聚乙烯,1F7B。

  2.2 实验仪器
  平板硫化仪、DSC2910差示扫描量热仪、橡胶塑料实验机、SF-11型塑料粉碎机、电子扫描显微镜。

  2.3 实验内容
  首先用不同熔点的石蜡和低压聚乙烯共混形成定形相变材料,然后采用不同种类的高压聚乙烯、低压聚乙烯、聚丙烯以及SEBS作为支撑材料制备出不同的定形相变材料,对它们的性能进行了研究分析。对定形相变材料进行DSC测试,升温速率5℃/min。对一些材料的微观结构用扫描电子显微镜进行了研究分析。
  
3 结果分析
  
  3.1 DSC分析结果
  3.1.1 不同支撑材料与48#切片石蜡的实验
  
  用切片石蜡和不同类型低压聚乙烯和聚丙烯进行了实验,石蜡所占的质量百分比相同,可以从图1看出有些HDPE组成的材料潜热值偏低,一方面由于材料本身造成的,材料各处潜热测量值有差异,另一方面则是由于材料和工艺的适应性不好。研制定形相变材料时,针对不同的材料,要相应的调整制备工艺。
         
                  图1 不同支撑材料与48#石蜡组成材料的潜热测量值
                1-HDPE5000S;2-HDPE5200B;3-HDPE2200J;4-HDPEJ0;5-PPS1003
  
  3.1.2 不同熔点石蜡实验
  我们对J0型HDPE与不同熔点石蜡混制备定形相变材料进行了实验,可以看出相同比例的精炼、半精炼石蜡组成的定形相变材料潜热值判别不大,而这个差别是由于原材料的潜热不同造成的(表1)。可以以不同熔点的石蜡为原料制出一系列不同熔点范围的定形相变材料,应用到不同领域中去。
  
        不同熔点石蜡组成材料的潜热值                      表1

石蜡类型半精炼56#半精炼58#精炼58#半精炼60#
相变潜热值(kJ/kg)103.197.37101.5111.2

3.1.3 材料均匀性
  我们分别在两个定形相变材料试样(组成材料一样,石蜡所占百分比不同)的4个不同部位分别取样进行DSC分析,得结果见图2,从图中我们可以看出同一试样不同部位相变潜热值差别不大,差别在10%以内,说明定形相变材料中石蜡分布较均匀。
  3.1.4 潜热测定及石蜡掺混比临界值讨论
            
                       图2 试样不同部位潜热值测试结果
             
                        图3 60#石蜡DSC测试曲线
              
                    图4 定形相变材料(石蜡占70wt%)DSC测试曲线
             
                     图5 定形相变材料(石蜡占90%)DSC曲线
             
                    图6 不同比例石蜡的定形相变材料的潜热测试值
  
  从60#石蜡DSC测试曲线(图3)可以看出,60#石蜡有两个相变峰,每个相变峰出现在40℃附近,较小,第二个相变峰出现在60℃,较大。从定形相变材料的DSC曲线(图4,5)中同样可以看到这两个相变峰,聚乙烯熔融的峰出现在120℃附近。可以看到两者的温度差约为60℃,能够保证在定形相变材料中石蜡发生相转变由固态变成液态时,聚乙烯能支撑结构使得材料形态不变。由DSC测得的相变热和用石蜡所占百分比概算得的结果差别不大。图6为含不同比例的石蜡的定形相变材料的潜热,石蜡含量在70%~90%之间,材料的相变热在130~175kJ/kg,可以看出潜热值随石蜡所占比例增加近似线性增加。为了实现支撑材料的对整体结构的支撑作用,支撑材料在定形相变材料中所占比例应有一个下限,即石蜡所占比例有一个上限,在制备定形相变材料时,石蜡比例达到90%时,定形相变材料有一些渗出现象,所以石蜡在定形相变材料所占质量百分比的不宜大于90%。

 3.1.5其他
  用HDPE和60#石蜡混和,石蜡掺混比达到80wt%时,定形相变材料性能较好,材料潜热测量值达到144.4kJ/kg。
  
  3.2 扫描显微镜分析结果
  利用扫描电子显微镜对用低压聚乙烯和60#半精炬石蜡(熔点60~62℃)制成的定形相变材料进行了结构分析。对定形相变材料的脆断面进行了拍照观察,然后用有机溶剂溶去石蜡对HDPE构架进行了观察。
              
                    图7 定形相变材料扫描电镜结果(1500倍)
              
                    图8 定形相变材料扫描电镜结果(3000倍)
  
  对定形相变材料断面用有机溶剂浸泡后溶去石蜡后的表面分析,得到图7和图8 的扫描电镜照片。浅色部分为聚乙烯的形成的骨架,深色的部分为石蜡被浸泡溶去后形成的凹陷。可以看到,定形相变材料分布较均匀,聚乙烯形成了空间的网状结
构。在石蜡熔融时,聚乙烯能够起到的支撑和封装作用,使材料的整体武装不发生变化。
  
4 结论
  
  可用不同类型的高压聚乙烯、低压聚乙烯、聚丙烯等一系列高分子材料作为支撑和微封装材料,不同熔点、不同类型的石蜡作为相变材料,制备系列定形相变材料,其中石蜡质量百分比可达80%,潜热较高,均匀性较好。有望作为相变地板应用到房屋建筑当中,并且可能和其他材料混合作业一种新型的建筑材料。下一步需要继续改进材料制备的工艺,改善材料的力学及其他性能。
  
  

  
  1 张寅平,胡汉平,孔祥冬等,相变贮能-理论和应用,合肥:技术大学出版社,1996
  2 H Inaba, P T. Heat and Mass Transfer, 1997, 32(4): 307--312
  3 Ye Hong, Ge Xinshi. Solar Energy Materials & Solar Cells, 2000, 64(1):37~44
  4 Xavier Py, Pegis Olivs, Sylvain Mauran. Heat and Mass transfer, 2001, 44(14): 2727~2737
  5 Xiao Min, Feng Bo, Gong Kecheng. Conversion & Management, 2002, 43 (1):103~108

图片内容