浅谈中国黄金现货价格预测模型
来源:岁月联盟
时间:2013-06-20
【关键词】黄金;黄金价格;ARMA模型;时间序列;价格预测
一、文献综述
我国自黄金市场化改革以来,黄金价格脱离了政府管制实现了自由波动,黄金产业链条的各个环节也都愈发明显的感受到了市场化改革所造成价格波动而带来的市场和经营风险。而黄金价格作为黄金市场中的核心要素一直都备受关注。众所周知,影响黄金变动的因素众多且复杂,这也是黄金作为一种特殊商品有别于其他普通商品的最重要表现。判断和预测黄金价格成为摆在黄金市场众多参与者面前的一个重要课题。而学术界对黄金价格的预测成果并不多,胡乃联等(1999)通过建立自适应过滤模型试图对国际黄金价格进行预测,顾孟钧等(2008)进行了基于BP神经网络的国际黄金价格预测模型研究,上述研究都是针对国际黄金价格的预测研究,而目前学术界针对国内黄金现货价格的预测研究尚不多见,本文试图通过自回归移动平均模型即ARMA模型对中国黄金现货价格进行预测,最终结果显示,预测结果与实际结果拟合度高,预测误差极小,表明该模型的建立对中国黄金现货价格的变动趋势具有较强的预测功能。
二、理论简述
ARMA模型是一类常用的随机时序模型,它是一种精度较高的时间序列预测方法。其基本思想是:某些时间序列是依赖于时间t的一族随机变量,构成该时序的单个序列值虽然具有不确定性,但整个序列的变化却有一定的规律可以用相应的数学模型近似描述。
ARMA模型有三种基本类型:自回归模型、移动平均模型以及自回归移动平均模型。时间序列是随时间改变而随机地变化的序列。时间序列分析是利用序列的历史信息以及历史信息之间的相互作用,对序列的未来轨迹进行预测的一种数学方法。实现时间序列分析技术的关键在于如何挖掘历史信息之间的相互作用信息,提高预测的精确性。时间序列分析的目的是找出它的变化规律,即模型,常用的模型主要有3种:AR模型(Auto-Regressive Model,自回归模型)、MA模型(Moving Average Model,移动平均模型)和ARMA模型(Auto-Regressive Moving Average Model,自回归移动平均模型混合模型)。自从1970年Box和Jenkins提出自回归移动平均模型及一套完整的建模、估计、检验、预测和控制方法以来,ARMA模型在时间序列的预测应用中越来越广泛。
一般说来,p阶自回归模型记做AR(P),满足以下方程:
q阶移动平均模型记做MA(Q),满足一下方程:
而一般的ARMA(P,Q)模型可以表示为:
三、数据选取
本文数据选取上海黄金交易所2002年10月30日至2010年4月24日的Au9995现货每日收盘价格①,数据规模共1832组,黄金现货价格以克为单位,人民币计价。计量分析软件使用的是Eviews6.0版本。
设中国黄金现货价格数据序列为Y,原始数据
由上图价格走势可以看出,中国黄金现货价格的走势呈震荡上扬状态,同时也发现价格数据序列为非平稳的。一般来说,非稳定序列转化为稳定序列数据变量的平稳性是传统的计量经济分析的基本要求之一,只有模型中的变量满足平稳性要求时,传统的计量经济分析方法才是有效的。而在模型中含有非平稳时间序列时,基于传统的计量经济分析方法的估计和检验统计量将失去通常的性质,从而推断得出的结论可能是错误的。另外,现代资本市场理论的基本假设之一是,价格时序的波动是平稳的且服从正态分布。而如果价格序列非平稳或非正态分布,那么采用一般统计方法做出的分析和预测就会出现较大的误差。因此需要对数据序列的平稳性进行检验。
因此,在建立模型之前需要先对非平稳的价格序列进行处理使其平稳化,并且对处理过后的数据进行检验,以确认其平稳性。
由于上述黄金现货价格数据是非平稳的,因此需要先进行差分使其平稳化,从而得到D(Y),如下
上述差分后的数据是否平稳需要进行检验。一般来说,平稳性检验的主要方法是单位根检验,单位根检验法也是现代时间序列分析中检验平稳性的有效方法。根据ADF检验的评判规则,若ADF检验值小于显着性水平为时的临界值,就可以认为该时间序列不存在单位根,即时间时序是平稳的。检验结果如下
上一篇:浅谈期货市场指标体系研究
下一篇:浅析新股发行制度的缺陷及其完善