基于GA-BP神经网络模型的期货价格预测与分析

来源:岁月联盟 作者:康璐 时间:2013-06-23

  依据以上模型与参数设定,在matlab中予以实现,结果图1所示,从图中可以看出,对大豆期货价格预测的走势是大致相同的,但是整体误差较大。虽然利用自适应调节学习率来改善收敛情况,但梯度下降的BP算法仍存在较大的局限性。为了改善神经网络的权值调整,所以用遗传算法对BP神经网络进行优化。
  3.模型的改进及实现
  遗传算法是一种全局优化搜索算法,其基本思想是首先将问题求解表示成基因型,通过选择,交叉,变异从中选取适应环境的个体,求得问题最优解,有较好的全局搜索性能。将遗传算法运用到神经网络模型,实现了两者的优势互补,发挥了神经网络的广泛映射能力和遗传算法的全局搜索能力,也加快了网络的学习速度,综合提高了整个学习过程中模型的逼近能力和泛化能力。
  在MATLAB中运行结果如图2所示,从中可以看出,加入遗传算法对权值和阈值进行优化以后的GA-BP模型结果能更好的贴近真实值,更准确的拟合。在本例中GA-BP模型的优势突出的表现在收敛速度快,周期短上面。相对于传统的BP算法减少了权值阈值初始化的随机性,GA-BP就可以大大缩短收敛时间。收敛情况如表1所示:
  表中以前200次迭代为例,遗传算法可以将mse缩减到e-5数量级,而简单的BP神经网络却只能达到e-3,并且迭代的后期下降的幅度越来越不明显。
  
  结论
  基于BP神经网络模型进行实证分析,从预测的结果来看,预测值和实际值的走势是一致的,但预测值和实际值具有较大的偏差,这是由于BP神经网络自身存在的问题所导致的。
  为解决BP神经网络模型不能精确预测的价格的问题,考虑到是由于BP算法调整权值的局限性,本文用遗传算法进行优化模型。利用遗传算法可以对权值进行全局搜索,避免了BP算法的局限性。从结果来看,预测值和实际值误差较小,能够精确的预测期货价格。
  运用此模型,我们还可以对期货价格操纵进行预测。在收集预测值与本期货品种历史上正常交易的真实数据估计模型参数,以此来预测未来一段时期的期货价格,通过预测值与真实值之间误差与检验区间的误差相比较,可以判断在预测区间内价格是否被操纵。如果预测的数据和市场的真实数据连续同向偏离,并且较大的超出这个品种正常交易时的误差均值,就可以判定存在操纵现象。即当下式成立时:

  可以认为在预测区间价格被操纵。其中和为预测区间的真实值和预测值,Oj和 Dj分别为检验区间的真实值和预测值,n为预测区间的数据长度,m为检验区间的数据长度,为允许的最大波动幅度。此时监管当局应谨慎观察,及时制止操纵行为,维持价格的稳定和市场秩序。

图片内容