汇改后人民币汇率波动对宏观经济的非对称性影响

来源:岁月联盟 作者:陈荣 时间:2013-03-27
 摘要:文章将汇改后人民币汇率的波动区分为“高波动”和“低波动”的两个状态,建立了带马尔科夫状态转换的向量自回归模型,识别了人民币汇率波动的“高波动”和“低波动”状态及其相应的特征,进而实证检验了人民币即期汇率在不同波动状态下对宏观经济所存在的影响。研究发现汇率波动对宏观经济存在着明显的非对称性影响,结果表明,维持人民币汇率“低波动”状态有助于我国经济增长,而维持“高波动”状态则有利于减轻人民币升值所带来的国内通货膨胀压力。
  关键词:人民币;汇率波动;MS-VAR
  
  一、引言
  本文将汇改后人民币汇率的波动区分为“高波动”和“低波动”的两个状态,建立了带马尔科夫状态转换的VAR模型,识别了人民币汇率波动的“高波动”和“低波动”状态及其相应的特征,进而实证检验了人民币即期汇率在不同波动状态下对宏观经济所存在的非对称性影响。
  二、实证模型:带马尔科夫状态转换VAR模型
  假设长期购买力平价成立,那么存在以下公式:
  et=pt-p*t ①
  其中et为人民币兑美元的即期汇率(间接标价法),pt-p*t 为中美通胀指数取对数后的差值。进一步,假设中美两国的货币市场处于均衡状态,即存在以下形式:
  mt+vt=pt+yt②
  m*t+v*t=p*t+y*t③
  其中mt和m*t分别为中美货币供应量的对数值,vt和v*t分别为中美货币流通速度的对数值,yt和y*t分别为中美产出的对数值。将②式减去③式,且假设两国货币的流通速度相等,则得到:
  mt-m*t=pt-p*t+yt-y*t④
  结合①式和④式,并且考虑在实际中中美两国之间购买力平价并不成立,因此在实证中,我们有必要将两国之间的通货膨胀率差的因素纳入实证模型,于是得到以下实证方程:
  et=c+α(mt-m*t)+β(yt-y*t)+γ(pt-p*t)εt⑤
  于是我们建立关于向量xt=(et,mt-m*t,pt-p*t,yt-y*t)′的MSMH-VAR(P)模型:
  ΔXt-a(St)=v+At(Δxt-1-a(St))+A2(Δxt-2-a(St))+…+Ap(Δxt-p-a(St))+ut
   ut~NID(0,∑(St))⑥
  其中vt是截距向量,ut是误差向量,且ut~NID(0,∑),Ai(i=1,…,p)为系数向量,p为滞后阶数。a(St)为在不同状态下经济变量的均值,∑(St)为在不同状态下误差向量的方差。在本文中,我们将状态分为“高波动”状态和“低波动”状态,而且假设St是一组服从马尔科夫链的离散随机变量,主要特征是,St等于某个值j的概率受过去的影响仅与最近St-1的值有关;经济系统由上期的区制i向下期各区制的转换概率之和等于1:
  P{St=j|St-1=i,St-2=k,…}=P{St=j|St-1=i}=Pij⑦
  且pi1+pi2+…+pim=1⑧
  或者表示为转换概率矩阵P:
  p…p┆?埙┆p…p,p=1,?坌i,j∈{1,…,m},m=2⑨
  现简单给出MS模型的参数估计思路。由式(6)可知,此时Δxt的分布取决于ΔXt-1、均值向量a(St)与方差矩阵∑(St)。如果经济系统处于某一区制St=i,那么Δxt的条件分布函数为:
  p(Δxt|St=i,ΔXt-1)ln(2π)ln|∑|exp{(Δxt-Δit)′∑i-1(Δxt-Δit)}⑩
  其中Δit=E(Δxt|St=i,ΔXt-1),而仅仅基于t-1期的信息集,Δxt的条件分布函数为:
  p(Δxt|ΔXt-1)=p(Δxt|St-1=j,ΔXt-1)=p(Δxt,St=i|St-1=j,ΔXt-1)=p(Δxt|St=i,St-1=j,ΔXt-1)p(St=i|St-1=j,ΔXt-1)=p(Δxt|St=i,St-1=j,ΔXt-1)p(St-1=j|ΔXt-1)pji{11}
  上式中,
  p(St-1=j|ΔXt-1)=
  
  {12}
  衡量了经济系统在t-1时期处于区制j的概率,我们称之为平滑概率(Smoothed Probablity)。式{11}和{12}表明t时期Δyt的条件分布函数可由t-1时期Δyt-1的条件分布函数和t-2时期的平滑概率推导而出,因此给定前样本的信息集ΔX0与初始时期经济系统所处区制的平滑概率p0,我们可以通过式{11}和{12}的迭代得出各期Δyt的条件分布函数:p(Δxt|ΔXt-1)、p(Δxt-1|ΔXt-2)、…,进而得到样本{Δx1、…ΔxT}的无条件分布函数:
  p(Δx1、…ΔxT)=p(Δxt|Δxt-1){13}
  =f(v1,…,vm,∑1,…,∑m,A1,…,Ap,B,p11,…pij…,pmm,p0){14}
  最后利用EM算法对式{13}的极大似然函数进行估计,得到式{14}中未知参数的值,以及相应的各期各区制的平滑概率,依此我们可以做相应的实证分析。

图片内容