试论金融风险测算新技术
2.动态模式下Copula方法的应用
众所周知,金融市场投资组合面临的风险每时每刻都在波动,在模型假设固定的情况下测算往往会低估风险,因此建立动态的,能及时体现市场波动特征的模型显得更为重要。Dean Fantazzini(2003)将条件Copula函数的概念引入金融市场的风险计量中,同时将Kendall秩相关系数和传统的线性相关系数分别运用于混合Copula函数模型中对美国期货市场进行分析。Patton(2001)通过研究日元/美元和英镑/美元汇率间的相关性,发现在欧元体系推出前后这两种汇率之间的相关性程度发生了显着变化。在此基础上,Patton提出引入时间参数,在二元正态分布的假设下提出了时变Copula函数来刻画金融资产。Goorbergh,Genest和Werker(2005)在Patton的基础上设计出新的动态演进方程并用在时变Copula中对期权定价进行了研究。Jing Zhang,Dominique Guegan(2006)开始构造拟合优度的统计检验量来判断样本数据在进行动态Copula建模时适用的模型结构,也就是时变相关Copula模型与变结构的Copula模型的统计推断,Ane,T.and C.Labidi (2006)采用条件Copula对金融市场的溢出效应进行了分析,Bartram,S. M.,S. J. Taylor,and Y-H Wang(2007)采用GJR-GARCH-MA-t作为边缘分布并用Gaussian Copula作为连接函数建立了动态Copula模型对欧洲股票市场数据进行了拟合,取得了较好的结果,Aas,K.,C. Czado,A. Frigessi,and H. Bakken(2008)在多元分布前提下对双形Copula建模进行了研究。
二、Copula方法在我国金融市场风险测算中的应用
1.二元Copula方法的应用
Copula方法在我国起步较晚,直到张尧庭(2002)才将该方法引入我国,主要在概率统计的角度上探讨了Copula方法在金融上应用的可行性,介绍了连接函数Copula的定义、性质,连接函数导出的相关性指标等。随后韦艳华(2003,2004) 结合t-GARCH模型和Copula函数,建立Copula-GARCH模型并对上海股市各板块指数收益率序列间的条件相关性进行分析。结果表明,不同板块的指数收益率序列具有不同的边缘分布,各序列间有很强的正相关关系,条件相关具有时变性,各序列间相关性的变化趋势极为相似。史道济、姚庆祝(2004)给出了相关结构Copula、秩相关系数Spearman与Kendall tau和尾部相关系数,以及这三个关联度量与Copula之间的关系,各个相关系数的估计方法等,并以沪、深日收盘综合指数为例,讨论了二个股市波动率的相关性,建立了一个较好的数学模型。叶五一、缪柏其、吴振翔(2006)运用Archimedean Copula给出了确定投资组合条件在险价值(CVaR)的方法,对欧元和日元的投资组合做了相应的风险分析,得到了二者的最小风险投资组合,并对不同置信水平下VaR和组合系数做了敏感性分析。曾健和陈俊芳(2005)运用Copula函数对上海证券市场A股与B股指数的相关结构进行分析,发现了与国外市场不同的研究结果:不论市场处于上升期或下跌期,上证A股与B股指数间均存在较强的尾部相关性。李悦、程希骏(2006)采用Copula方法分析了上证指数和恒生指数的尾部相关性。肖璨(2007)则较为全面的介绍了Copula方法应用二元情况下的建模与应用。
2.多元Copula方法的应用
只在二元情况下度量金融市场风险并不全面,现实金融市场中的机构投资者和个体投资人通常选择多个金融资产进行组合投资以降低投资风险,因此如何刻画多个金融资产间的相关结构,对于规避市场风险更具有现实意义,但如何将二元向多元推广依然是一个需要解决的难题。这是因为当变量增加时,模型的复杂程度及参数估计难度都将呈指数倍增长,针对二元方法的模型参数估计可能将不再适用,需要研究新的估计方法。
三、总结与展望
Copula方法作为一种测算技术被引入金融领域中,由于其良好的性质和对风险的准确度量受到了理论界和金融机构的广泛重视,已成为金融风险测算的一种重要方法。本文就国内外采用Copula方法对金融市场风险测算的已有研究进行了总结,可以看到对于市场风险,已有的研究经历了从理论研究到实证说明,从常规模式到动态模型,从二元基础情况到多元复杂拟合的一个过程,Copula方法对于市场风险的测算已处于一个较高的水平。