中国商业银行金融风险预警指标体系研究

来源:岁月联盟 作者:未知请联系更改 时间:2013-05-19

【关键词】预警,指标体系,研究,风险,金融,商业,银行,中国,

  2008年以美国次贷危机为标志的金融海啸席卷全球,作为金融机构的主体部分,商业银行在此次危机中同样遭受重创。在历经冲击之后,商业银行的风险管理和识别能力开始让人质疑。中国经济尚处于高速发展和转型初期,商业银行金融风险在宽松的宏观经济环境下并不显著,但由于中国不断与国际经济接轨,开放条件下全球性的金融危机仍然会给国内商业银行带来巨大的经营压力。

  实践表明,中国商业银行的风险管理多侧重于事后弥补和经验总结,但是相对来说更为重要和紧迫的事先管理却未能得到足够的认识和实施。要实现对于商业银行金融风险的监测,建立风险预警机制,根据现有的指标数据对短期内商业银行金融风险爆发的可能性进行全面有效的评估是事先管理的一种切实可行方法。本文在国内外相关学者的研究基础上,结合国内商业银行风险现状,建立了一个全面的商业银行金融风险预警体系,并从近期数据给出了对商业银行金融风险的评价及实证检验。

  二、相关领域文献回顾

  国际上对于银行业金融风险预警的研究早在20世纪就已经取得了令人瞩目的成绩,但种种成果也存在诸多问题,并且多数方法与中国的实际有着很大的差距。

  1979年由联邦金融机构监管委员会建立的CAMEL评级制度经过1997年的修改后,成为美国主要监管机构统一使用的CAMELS(骆驼)制度[1]。伴随银行业务的拓展,部分国家监管当局引入美国CAMEL评级制度,同时结合本国监管情况建立了相对独立的主观判断评价体系。

  CART(Classification and Regression Tree)结构分析法,根据选定的某几项财务指标作为分类的标准,运用二分法,通过建立二元分类数来分析被考查对象状态[2]。Logit模型主要采用了logistic函数[3],该模型的问题在于当样本点存在完全分离时,模型参数的极大似然估计可能不存在,模型的有效性存在问题,另外该方法对临界区域的判别敏感性过度,容易导致相近样本评估结果之间差别过大。

  Altman等人(1994)利用神经网络对意大利公司进行失败预测[4]。神经网络方法是一种自适应的非参数方法,并不严格要求样本数据的分布,不仅具有非线性映射和泛化能力[5],而且神经网络模型的分布自由,较之多元判别分析模型,对实际问题更加适用。

  信用度量技术(Credit Metrics,1997)运用VaR 框架[6],对贷款和非交易资产进行风险的评价和计量[7]。但是Credit Metrics模型的违约模型和相关系数的度量是以期权定价理论为基础的,这对资本市场的成熟度以及数据的真实性都有极高的限制要求,因而可操作性有所降低。

  麦肯锡模型(Credit Portfolio View,1998) [8]是在Credit Metrics的基础上,对经济的周期性因素予以考虑,通过蒙特卡罗模拟技术(Astructured Monte Carlo Simulation Approach)模拟周期性因素的冲击,以测定评级转移概率的改变趋势并进行度量[9],但是由此给模型增加了相当的复杂程度。

  相比之下,国内关于商业银行金融风险预警的研究起步较晚,同时囿于研究所需的数据资料稀缺等原因,致使当下国内该领域的研究仍然十分欠缺。具有代表性的理论研究大致如下:

  隋剑雄(2004)针对国内商业银行经营管理模式,提出了适应本国银行发展需求且以核心指标和辅助指标构成的信贷风险预警指标体系,采用向量法(TE)作为构建风险预警模型的算法,通过构建商业银行信贷风险预警系统对信贷风险进行监测和分析,该模型侧重于对商业银行信贷风险的说明及预警的相关指标和报警范围[10]。

  李华明、向颖珍(2007)运用时间序列分析方法,以ARMA模型来构建信用风险预警模型,使得信用风险预警模型将影响信用风险的多种因素通过所考察的指标自身的变化来反映[11]。不足之处在于:首先,该模型单纯用历史数据进行模拟,虽预测了其可能的走势,但对其存在这种走势的具体原因并没有明确表明;其次该模型只是利用不良贷款率单一指标来建立模型,没有考虑其他指标折射的整体状况;最后,模型的模拟效果也会随着指标的变化而变化,预测结果十分不稳定。

  从监管层面来看:2005年开始,银监会依据新制定的《商业银行风险预警操作指引(试行)》按季对商业银行法人机构进行风险预警的试运行,以提高银行风险监管的敏感性和有效性。

  综合以上的理论研究可以看出,现有的成果主要存在下列不足之处:一是大多学者关于预警体系的研究都过度集中于商业银行的信贷业务,从而无法做到整体考量商业银行的风险;二是过分依赖少部分银行现有的指标,再依据趋势变化给出预警结果,但往往结果偏离较大,不够理想。整体来看,中国商业银行金融风险预警多停留于较为传统的指标分析阶段,即使少数学者提出数量方法,但也显得单一和偏颇,因而对于该领域的研究还应当增加定量方法以期取得更好的功效。

  三、商业银行金融风险来源

  从中国商业银行的发展历程及现状来看,商业银行所面临的主要风险集中体现为信用风险、市场风险、操作风险和流动性风险(操作风险属人为因素所导致,在接下来的指标体系构建中暂不予考虑)。再依据其风险来源的差异大致可以将商业银行金融风险划分为以下几个方面:

  (一)宏观经济发展所带来的风险

  商业银行金融风险的发生很大程度上取决于经济基本面的运营状况,如果宏观经济运行中出现通胀或是结构失衡等现象,都将导致市场上货币资金的供求产生大幅的变化,作为货币资金的投放和回笼机构,商业银行的经营势必受到重大影响,进而导致风险的滋生。

  (二)对外经营业务的隐患

  这类风险主要在于国际业务的逆差以及游资对于本国金融行业的冲击。在国际业务往来中,商业银行通常承担着资金的清算及资金缺口的补偿,因而首当其冲的面临着汇率风险的考验。另外,游资在短期内低进高出,依靠短期内自身相对于东道国的资金优势,操纵金融产品价格,这势必在其抽逃之后造成金融风险的扩散,商业银行必将受到牵连。当然风险主要体现在汇率水平等指标上。

  (三)商业银行资本金不足导致的风险

  商业银行的经营是一种高负债形式,尽管如此,商业银行还是应当在一定范围内保证库存资金的充足,即使在不能保证库存的条件下,也起码要保证在出现资金短缺时能以较低的利率水平向同业拆得资金,否则商业银行的经营将蕴藏巨大的危机。这类风险大小主要取决于同业拆借利率、资本充足率等。
  (四)信贷业务带来的风险

  在商业银行的经营过程中,由于顾客的存贷业务完全属随机行为,因而如果短期资金所占到的比重较大,将势必给银行的经营带来额外的风险负担。一旦短期内存款到期,提现业务将会给银行的存量资金施加压力。风险衡量主要有赖于存(贷)增长率及短期贷款占比。
 

 (五)商业银行的获利水平影响其风险程度

  商业银行的根本目的在于经营获利,如果商业银行经营状况良好,将会获得存贷客户的信任,即使出现一定程度的经济波动,也难以出现挤兑现象。而且较好的盈利水平同样使得商业银行在出现资金短缺时能够较轻易地从同业处拆得资金以弥补头寸。主要体现在贷款收益率、资产利润率等指标上。

  (六)流动性制约的风险大小

  美国的次贷危机导致了全球性的经济恐慌,中国的金融业也因此遭受不同程度的损失,各个商业银行直接或间接地受到很大的影响,随着房贷还款期限临近,更多的不良贷款将会逐渐显现出来。一旦房地产泡沫破灭,势必多数的商业银行将遭受牵连,所以充足的资金拨备对商业银行而言是不可或缺的。代表性的指标有拨备覆盖率、存款准备金率等。

  四、预警指标体系的构建

  欲构建商业银行金融风险预警指标体系,不仅要做到指标体系的预警效果明显,而且指标数据的获得要具有可行性,另外预警也必须具有良好的可操作性。根据中国商业银行金融风险的不同来源,截取了六大类预警指标作为构建体系的基本依据。

  为了迎合中国金融风险的隐蔽性等特性,在构建指标体系时尽量做到精细,以达到全面考量商业银行金融风险的目的。最终共选取20项指标对风险进行评估,组成一个完整的预警体系(见表1)。

  五、指标安全区间的确定

  商业银行的金融风险预警指标是否达到危机水平或是确定危险程度,可依据既定的安全区间来判断。通常在划分安全区间时多参考中国人民银行及银行业监督管理委员会的政策性文件,当然如果国际上有公认的临界值,则应当依据此项临界值再行划分安全区间,总之对于安全区间的确定必须做到有据可循,并且保证指标的准确无误。另外,如果某一既定临界值不适应目前的商业银行状况,则在此临界值的基础上进行适当的微调。

  在考虑指标安全区间时应当注意:并非所有预警指标都是风险单调型的,也即是存在部分指标属于非单调型。例如资本充足率对于商业银行的金融风险无疑具有风险单调递减的特性;但是形如汇率等指标却并不如此——汇率在大于12与小于6时都具有风险递增的特性,这等同于在区间内部存在某一特定的峰值为最优,因此在划分安全区间时予以充分考虑。

  根据上述原则,笔者对各项预警指标的安全区间进行了大致划分,具体情况见表2。

图片内容