简论解决物理问题的模型思维方法

来源:岁月联盟 作者:霍莲霞 时间:2014-08-22
  (四)利用等效思维转换模型
  物理等效思维意味着从同等效力的研究和学习的物理现象和物理过程的思维方式之间的事情,并分析物理问题和运用解决物理问题的思维形式。使用物理问题简化为相当于实际复杂的物理现象和物理过程或物理问题的思维,并转换为等效的理想和简单的物理现象,物理过程或物理问题来研究和处理。
  (五)适当运用逆向思维建立模型,化繁为简,提高解题能力
  逆向思维是一种与传统的、逻辑的或群体的思维方向完全相反的思维方式。它善于从相反的角度、不同的立场、不同的侧面去思考问题,当某一思路受阻时,能够迅速转移到另一思路,从而使问题得到顺利的解决。例如,法拉第在“电能生磁”的基础上进行逆向思维,萌发了“磁能否生电”的想法,终于发现电磁感应现象,导致了电气化时代的诞生。
  (六)对实际问题进行理想化处理建立模型,培养抽象思维能力
  所谓理想化,就是把客体抽象成模型的思维方法。为了剖析复杂繁琐的物理现象,物理学家通常取用简单化的方法,对客体进行科学化、逻辑化的抽象。在制约着研究对象的众多主次因素里,把作用小并且不影响本质的次要因素予以删略,将事物抽象成只具有不影响原事物功能和特质的核心因素的模型。理想化是物理学中最重要的科学方法之一,中学物理教材几乎全都是在理想化思想指导下取得的人类智慧的结晶。自由落体运动、抛体运动、匀强电场等等,无一不是理想化的过程或模型。
  (七)巧妙类比,迁移知识建立模型,培养学生联想思维能力
  类比是从两类不同事物之间找出某些相似关系的思维方法,它的本质的、深刻的特征,就在于要求突出地抓住类比对象之间的“关系”相似,根据两个对象部分属性相似或相同,从而推出另一些属性也可能相似或相同的一种科学方法。联想类比作为一种策略,在引导学生解决物理实际问题时也起着不可低估的作用。在解决具有创新能力的新题型时,要通过对题设信息的分析,探索出试题设问的实际问题与中学物理学科知识的相同点或相似点,将所学的知识迁移到新情境中去。通过联想类比,可以唤醒记忆,沟通新旧知识之间的联系,从而化难为易,化隐为显,化生疏为熟悉,从而使问题得以解决。
  (八)运用估算法建立模型,解决实际问题
  物理估算,是指对物理量的大致数值范围或数量级进行科学的推算方法。求解物理估算问题,往往能够体现是否有明确的物理思想以及求解物理问题的灵活方法,也往往体现出是否具有优良的科学素质。估算与精确计算相比,不是降低而是提高了对运用数学解决物理问题能力的要求。学生往往具有一种单纯追求精确计算而忽视估算的倾向,一遇到已知数值“给的不够”的问题时,就放弃了解决问题的努力。事实上,许多这类问题是能够根据物理规律并通过估算得出令人满意的结果的。
  一般来说,在简要说明物理估计问题过程中,所给的已知数据是有时很少,有时太多,这些已知量和未知量之间的关系还远未明朗,往往夹杂一些干扰因素。因此,解决实际的物理问题时,我们必须先仔细分析预设的物理现象,对给定的物理情景进行深入的分析,抽象出物理过程的本质,明确解决的知识范围的问题,澄清有关概念,适当的选择物理定律,应用物理知识实现准确定位,从而达到解决问题的目的。

图片内容