热休克蛋白70对兔未成熟心肌和心肌间质的影响
作者:孙忠东,宋玉娥,池一凡,夏家红,杨铁南,肖诗亮,杨辰垣
【关键词】 心肌间质
Effects of heat shock protein 70 on immature myocardium and myocardial interstitium in rabbits
【Abstract】 AIM: To investigate the protective effects of heat shock protein 70 (HSP70) on immature myocardium and myocardial interstitium. METHODS: Isolated working rabbit heart model was used in this study. Twelve rabbits (aged 14-21 days) were randomly divided into 2 groups: Control group (C) undergoing 45 min ischemia followed by 45 min reperfusion after distilled water was injected by intraperitoneum 24 h later, and experimental group (E) undergoing 45 min ischemia followed by 45 min reperfusion after norepinephrine was injected by intraperitoneum 24 h later. The HSP70 content, lactate dehydrogenase (LDH) and creatine kinase (CK) leakage, adenosine triphosphate (ATP) and malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, hydroxyproline (HP) and endothelin (ET) content, myocardial cell Ca2+ content, Ca2+ATPase activity of mitothondia ([Ca2+ATPase]m) and its Ca2+ content ([Ca2+]m), synthesizing ATP activity of mitochondria([ATP]m) and myocardial ultrastructure were tested. RESULTS: The cardiac function recovery was better in E group than C group (P<0.05). The HSP70 content, ATP content, SOD activity, HP, [Ca2+ATPase]m activity and [ATP]m activity were higher in E group than C group (P<0.01). The MWC, LDH and CK leakage, MDA content, ET, myocardial cell Ca2+ content and [Ca2+]m content were lower in E group than C group (P<0.01). The myocardial ultrastructure injuries were milder in E group than in C group. CONCLUSION: HSP70 has obvious protective effects on immature myocardium and myocardial interstitium.
【Keywords】 heat shock protein 70; immature myocardium; myocardial interstitium; cardioprotection
【摘要】 目的: 探讨热休克蛋白70(HSP70)对未成熟心肌和心肌间质的影响. 方法:健康新生长耳大白兔12只随机分为2组. 对照组(C组):ip生理盐水0.4 mL,24 h后取离体心脏,常规建立Langendorff离体心脏灌注模型,灌注15 min转为工作心15 min后停灌45 min,恢复灌注15 min改为工作心30 min;实验组(E组):ip去甲肾上腺素, 24 h后取离体心脏,方法同对照组. 测定心肌细胞中HSP70含量、血流动力学指标、心肌含水量(MWC)、心肌肌酸激酶(CK)和乳酸脱氢酶(LDH)漏出率、三磷酸腺苷(ATP)含量、超氧化物歧化酶(SOD)和丙二醛(MDA)含量、心肌组织羟脯氨酸(HP)含量、内皮素(ET) 含量、心肌细胞内Ca2+含量、心肌线粒体Ca2+ATPase活性及其Ca2+含量、心肌线粒体合成ATP能力[ATP]m,心肌超微结构. 结果:E组HSP70含量明显高于C组(P<0.01);MWC低于C组(P<0.05);ATP含量、SOD活性、心肌线粒体Ca2+ATPase活性、[ATP]m, HP含量优于C组(P<0.01),MDA含量、CK, LDH漏出率、心肌细胞内Ca2+含量、心肌线粒体Ca2+含量、ET含量低于C组(P<0.01),心肌超微结构损伤较C组明显减轻. 结论:HSP70对缺血再灌注未成熟心肌和心肌间质具有明显的保护作用.
【关键词】 热休克蛋白70;未成熟心肌;心肌间质;心肌保护
0引言
1988年Currie等[1]证实在某些非致死性应激(如高温,缺血再灌注)条件下能诱导合成热休克蛋白(heat shock proteins, HSP)能提高对应激的耐受力,其中HSP70家族倍受重视. 在成熟心肌中,人们通过各种方式能诱导HSP70表达增强了心肌的抗损伤能力. 然而在未成熟中,人们对心肌HSP70表达及抗损伤能力并不清楚. 我们观察ip重酒石酸去甲肾上腺素诱导HSP70在未成熟心肌中的表达对缺血再灌注时心肌的影响.
1材料和方法
1.1材料
出生14~21 d的健康新生长耳大白兔12只,随机等分为2组:实验组(E组)和对照组(C组). 对照组ip生理盐水0.4 mL后24 h取离体心脏,常规建立Langendorff模型,灌注15 min转为工作心15 min后停灌45 min,恢复灌注15 min改为工作心30 min;实验组,重酒石酸去甲肾上腺素(溶于生理盐水中)3.1 μmol/kg (0.53 mg/kg) ip后24 h取离体心脏,方法同对照组.
1.2方法
兔心脏跳动稳定后,记录心率(heart rate, HR)、主动脉流量(aortic flow, AF)、冠状动脉流量(coronary flow, CF)、心排出量(cardiac output, CO)、左心室收缩压(left ventricular systolic pressure, LVSP)、左心室舒张末压(left ventricular enddiastolic pressure, LVEDP)、左心室内压上升最大速率(+dp/dtmax)、左心室内压下降最大速率(-dp/dtmax)等,以持续停灌前工作心基础水平为100%,比较复灌末心功能恢复的百分率. 实验结束后取标本测心肌含水量(myocardial water content, MWC)、心肌肌酸激酶(creatine kinase, CK)和乳酸脱氢酶(lactate dehydrogenase, LDH) 15 min漏出率、心肌组织三磷酸腺苷(ATP)含量(荧光素酶法)、超氧化物歧化酶(SOD)和丙二醛(MDA)含量 (化学比色法,试剂盒购自南京聚力生物工程研究所)、心肌组织羟脯氨酸(hydroxyproline, HP)含量、内皮素(endothelin, ET) 含量、心肌线粒体Ca2+ATPase活性及其Ca2+含量、心肌线粒体合成ATP能力[ATP]m、心肌超微结构等. 采用Western blot法测定心肌细胞中HSP70含量. 用2×SDS样品缓冲液裂解细胞,收集细胞蛋白质,经SDSPAGE分离后迅速转移至尼龙膜,按[2]加入抗HSP70 mAb(1∶1000)及碱性磷酸酶偶联的抗小鼠IgG(1∶1000),用硝基蓝四氮唑/溴氯吲哚磷酸盐(NBT/BCIP)显色.
统计学处理:所有数据以x±s表示,采用t检验. P<0.05差异有显著性.
2结果
2.1血流动力学指标E组与C组比较,HR,AF恢复率差异无显著性,CF,CO,LVSP,LVEDP,+dp/dtmax和-dp/dtmax差异有显著性(P<0.05,Tab 1).表1心功能参数(略)
2.2生化指标E组MWC低于C组(P<0.05);ATP含量、SOD活性、心肌线粒体Ca2+ATPase活性、[ATP]m和HP含量优于C组(P<0.01),MDA含量、CK,LDH漏出率、心肌细胞内Ca2+含量和心肌线粒体Ca2+含量、ET含量低于C组(P<0.01, Tab 2~4). HSP70含量也有明显差异(P<0.01,Fig 1).表2心肌MWC, LDH和CK漏出率、ATP含量(略)表3心肌SOD, MDA, Ca2+, HP, ET含量(略)
表4心肌线粒体Ca2+ATPase活性、Ca2+含量及合成ATP能力(略)
2.3心肌超微结构C组:线粒体肿胀明显,部分呈空泡状融合并溢出细胞外,线粒体嵴溶解明显;肌丝排列紊乱、溶解(Fig 2A). E组:线粒体轻度肿胀,偶有线粒体呈空泡状,线粒体嵴排列尚整齐、密度无增高;肌丝排列整齐(Fig 2B).
3讨论
HSPs有多个家族,其中HSP70家族(Mr 66 000~78 000)是最丰富的HSPs,HSP70家族是一类最保守和最重要的热休克蛋白家族,在心肌保护中起重要作用. HSP70参与蛋白质的折叠和伸展、多聚复合物的装配以及蛋白质在胞质与细胞器之间的移位等. 已有实验证实HSP70诱导总量(或表达)与心肌缺血、坏死的范围及程度呈负相关[3]. HSP70具有帮助蛋白质完成细胞内转移的功能(分子伴侣功能)[4]. 在应激状态下HSP稳定细胞内变性的蛋白质,有利于它们的消除和修复,从而在应激状态下起到保护和恢复细胞功能的作用,其解离过程需要ATP参与. HSP70也是一种类固醇激素受体结合蛋白[5],类固醇激素受体可以与HSP70结合,结合后HSP70将此受体由胞质运送到细胞核中,发挥受体的作用.
在心肌组织,热休克处理后,无论成熟的或未成熟的心肌细胞都能合成HSP70 [6]. 许多应激原如缺血、缺氧、压力或容量负荷、重金属、药物[7]等和热应激一样,在心肌细胞中都能诱导HSP70表达,对抗缺血后再灌注损伤. 在冠状动脉内皮细胞同样也可以诱导HSP70的表达[8],发挥心肌抗缺血后再灌注损伤作用. 研究证实,5′核苷酸酶活性增强在心肌HSP70抗缺血后再灌注损伤中起重要作用[9],经过热预处理或缺血预处理的心肌同样表达HSP70,与缺血预处理一样具有心肌保护作用[10]. 近来研究表明,HSP70的表达与蛋白激酶C(protein kinase C, PKC)激活密切有关[11],心肌保护作用与HSP70减少线粒体损伤相关[12]. 我们的实验通过ip重酒石酸去甲肾上腺素诱导心肌HSP70表达. 结果显示,ip 24 h后HSP70蛋白表达明显增多. 离体心脏实验结果表明,与C组比较,E组在再灌注期间,左室的舒缩功能明显改善,LDH, CK和ET的漏出率及MDA含量减少,心肌水肿减轻,ATP, HP含量及SOD活性增高,E组心肌细胞内、线粒体内Ca2+明显含量减少,线粒体ATP合成能力和心肌线粒体Ca2+ATPase活性较C组明显增加,心肌超微结构损伤明显轻于C组,证实HSP70的表达对缺血再灌注未成熟心肌功能和形态具有明显的保护效应.
【】
[1] Currie RW, Karmazyn M, Kloc M. Heat shock response is associated with enhanced postischemic ventricular recovery[J]. Circ Res,1988;63: 543-549.
[2] Sambrook J,Fritsch EF,Maniatis T. Molecular cloning: A laboratory manual[M]. 2nd ed. NY: Cold Spring Harbor Laboratory, 1989: 1860-1874.
[3] Hulter MM, Sievers RE, Vissern FLJ, et al. Heat shock protein induction in rat heartsA direct correlation between the amount of heat shock protein induced and the degree of myocardial protection[J]. Circulation,1994;89: 355-360.
[4] Beckman BP,Mizzen LA,Welch WJ. Interaction of HSP70 with newly synthesized proteins: Implication for proteinfolding and assembly[J]. Science, 1990;240:850-854.
[5] Knowlton AA. The role of heat shock proteins in the heart[J]. J Mol Cell Cardiol, 1995;27: 121-131.
[6] Nomura F,Aoki M,Forbess JM,et al. Myocardial selfpreservative effect of heat shock protein 70 on an immature lamb heart[J]. Ann Thorac Surg, 1999;68:1736-1741.
[7] Meng XM,Brown JM,Ao LH, et al. Norepinephrine induces heat shock protein 70 and delayed cardioprotection in the rat through α1 adrenoceptors[J]. Cardiovasc Res, 1996;32: 374-383.
[8] Amrani M,Latif N,Morrison K, et al. Relation induction of heat shock protein in coronary endothelial cells and cardiomyocytes: Implication for myocardial protection[J]. J Thorac Cardiovasc Surg,1998;115:200-209.
[9] Sakaguchi T,Sawa Y,Kitakaze M, et al. Ecto5nucleotidase plays a role in the cardioprotective effects of heat shock protein 72 in ischemiareperfusion injury in the rat hearts[J]. Cardiovasc Res, 2000; 47:74-80.
[10] Chong KY,Lai CC,Lille S, et al. Stable overexpression of the constitutive form of heat shock protein 70 confers oxidative protection[J]. J Mol Cell Cardiol,1998;30:599-608.
[11] Baek SH,Lee UY,Park EM, et al. Role of protein kinase Cδ in transmitting hypoxia signal to HSF and HIF1[J]. J Cell Physiol, 2001; 188:223-235.
[12] Kawai A,Nishikawa SI,Hirata A, et al. Loss of the mitochondrial HSP70 functions causes aggregation of mitochondria in yeast cells[J]. J Cell Sci, 2001;114: 3565-3574.