CD36、磷脂蛋白与动脉粥样硬化
【关键词】 CD36;oxLDL;动脉粥样硬化;膜受体
【Abstract】 Atherosclerosis is one of the serious diseases to human and it is mainly caused by the interaction of a scavenger gene family member, membrane receptor CD36 and lipoprotein, oxLDL to form foam cells in the sub-endothelial space of the involved vessel. In this article, the molecular characteristics and physiological functions of CD36 and oxLDL as well as their relation to the occurrence of atherosclerosis were briefly reviewed and analyzed. The information provides us to a better understanding of the mechanism of atherosclerosis and the pervention for the disease.
【Key words】 CD36;oxLDL; atherosclerosis; receptor
动脉粥样硬化(Atherosclerosis)是严重影响人类健康的疾病之一。近年来,随着心脑血管发病率逐年增高的趋势,对于动脉粥样硬化产生的机理已成为医学界和生物界广为研究的热门课题。综合已有研究成果证实,归属于清道夫(Scavenger)家族成员之一的CD36和低密度氧化脂蛋白(oxCDL)与动脉粥样硬化疾病发生紧密相关[1, 2]。因此,本综述拟对CD36和oxDL的生物学特性和生理功能以及与动脉粥样硬化发生进行综合分析,为进一步开展对该疾病的研究和预防提供理论依据。
1 CD36结构与功能
CD36属一种多功能细胞膜受体,直接影响动脉粥样硬化的形成。它于1976年首次被发现并被归属于一种抗蛋白酶血小板膜表面糖蛋白,并根据它在SDS-PAGE电泳所获分子量而命名为糖蛋白Ⅳ,由于它与白细胞分化抗原CD36相似,因此而得名[3]。CD36是一类分子量为88kDa的细胞表面糖蛋白,广泛在单核细胞、巨噬细胞、内皮层细胞、血小板、红细胞前板、脂肪细胞、肌肉细胞以及乳腺内皮层细胞中发现[4,5]。并且CD36与溶酶体膜结合蛋白(LIMPⅡ)、清道受体B1(SRB1)以及CLA1共同构成一类新的基因家族[6,7]。CD36蛋白为多肽单链,包含有两个跨膜区域(Transmembrane domains), 且此两区域具有棕榈酰化(Palmitoylated)半胱氨酸残基[8]。CD36肽链两个硫水末端作为与细胞膜结合支柱外,且两末端的最后10个氨基酸位于胞内,其余部分则暴露于细胞膜外周称为外周部分(extracellular segment)。它膜外周区行使功能结构,具有许多受体结合部分,并具多个N-连接的糖苷化为点, 且C-末端可能参与受体激酶(kinase)调节的信息传导作用[9]。
CD36作为膜蛋白复合受体,与多种配体结合,行使不同生物功能。这些配位体主要包括阿米巴传染的血红细胞[10~12],胶原蛋白类型Ⅰ和Ⅳ[13],血小板反应蛋白(TSP)[14], 血小板凝集因子P37[15]以及Src家族蛋白激酶调节相关的信号传导因子[9]。此外,CD36还参与长链脂肪酸的吸附和调节细胞凋亡残物的清理和巨噬细胞的吞噬作用等[16, 17]。研究结果证实,上述这些配体在CD36肽链具有特异结合位点,如TSP结合位点为肽链氨基酸93-120, pRBC为145-184,凋亡细胞结合位点为155-183,以及oxLDL为28-93[18, 19]。
2 CD36与脂蛋白oxLDL
已有研究证实,有A、B、C三类对脂蛋白oxLDL结合的受体,其中A类包括乙酰化低密度受体(AcLDL),并且AcLDL受体分别能与oxLDL、AcLDL和一些多聚阴离子配体结合。C类受体与A类基本相似,但几乎仅在果蝇胚胎巨噬细胞中发现[20]。Endeman等和Acton等采用COS7细胞表达克隆鉴定出一类对oxLDL高密度亲和的受体,归属于B类,包括CD36和SR-B1。类似A和C类受体,B类受体能与oxLDL和AcLDL高度亲和,但与A和B类不同的是能与负性的磷脂反应。oxLDL一旦与CD36结合后,迅速被CD36蛋白内卷(internalization)[21~23]。此外,人类的巨噬细胞的CD36既能与修饰的LDL(oxLDL和AcLDL),还与尚未修饰的磷蛋白(LDL,HDL和VLDL)高度亲和[24]。CD36基因敲除的巨噬细胞对oxLDL的结合和内包以及降解能力显著减弱,因此细胞胆固醇脂类的沉积也明显降低[25]。这些结果说明,CD36是主要的oxLDL受体并且对脂肪的沉积和代谢起着重要的调节作用。
3 oxLDL与动脉粥样硬化
动脉粥样硬化最早可见的症状是负荷脂类的巨噬细胞在血管内壁形成,这类细胞称为泡沫状细胞(foam cells)[25~27]。实验研究证实,oxLDL明显沉积在动脉粥样硬化的病灶内,但在正常的动脉血管内没有发现。未经修饰的脂蛋白(LDL、HDL)以及氧化的脂蛋白(oxLDL)在动脉壁管内的沉积作用在有脂蛋白酶(Lipase)的作用下而增强,这可能是动脉粥样硬化产生的重要环节[28,29]。从许多动物的研究中发现,抗氧化剂如Probucal能降解低或缓解动脉粥样硬化的发生[30]。
oxLDL除促进巨噬细胞胆固醇的沉积以外,还参与其它致使动脉硬化产生途径。oxLDL对细胞具有一定毒力作用(toxic),可致使由于氮氧化物(Nitric oxide)的释放受阻而引起内壁细胞损伤[31, 32]。同时,oxLDL还对单核细胞具有趋化作用以及对巨噬细胞迁移的阻碍作用[33, 34]。oxLDL的氧化尽管是低度的,仍能诱导巨噬细胞克隆刺激因子,单核细胞趋化蛋白因子和一些组织因子的表达,而直接或间接影响动脉粥样硬化产生[35]。此外,oxLDL还能在内壁细胞吸附分子如VCAM-1的表达和诱导细胞凋亡过程发生[36, 37]。上述这些过程均能导致单核细胞和巨噬细胞的聚集和滞留,最终导致动脉粥样硬化的发生。
4 导致脂蛋白氧化的因素
磷脂蛋白包括有磷脂、游离胆固醇、胆固醇乙脂、甘油酯等所有这些都有可能被氧化。LDL在实验室条件下可被金属离子如Cu+和Fe+氧化[38],但此过程一般不含在体内条件下发生。这类金属离子可能仿效生物学上产生的氧化元素如OH和O2而起作用[39]。目前,体内LDL氧化因子尚未定义,但推测可能包括以下种类,如由白细胞产生的游离基和超氧化物[40]、酯加氧酶(Lipoxygenase)。如在巨噬细胞和内壁细胞中发现的15-酯加氧酶[41],在单核细胞和嗜中性粒细胞中的髓过氧化物酶(Myeloperoxidase)[42],与糖尿病发生中葡萄糖水平增加时糖氧化物作用(glycoxidation)以及活性氧的中间物等[43]。在具有抗氧化因子,如维生素-E ,β-Carotene和ubiquinol 的条件下, 磷脂蛋白(LDL)的氧化一般不易发生[44, 45]。
5 小结
动脉粥样硬化是一种广泛性疾病,严重威胁人类健康和生活质量。因此,对于该病发生发展的机理以及方法的研究已引起高度重视。大量研究证实,CD36作为清道夫受体家族成员之一,通过它与氧化低密度磷脂的特异结合和沉积,导致以海绵细胞形成为病灶的动脉粥样硬化的产生。近期采用CD36基因敲除的白鼠为模式动物实验,直接证实CD36对动脉硬化产生的作用[46]。采用骨髓移植技术,将CD36基因缺陷的骨髓移植到apoE-缺陷的老鼠,动脉粥样硬化发生降低70%~80%[25, 47, 48]。此外CD36还参与脂肪酸的运输,细胞凋亡残留物的清除和信号传导等作用。鉴于CD36的功能多样性和对心血管疾病发生的紧密相关性,进一步开展对CD36的结构和功能以及与其他细胞因子的偶联作用以及抗氧化因子的开发研究对于我们有效更深入了解对心血管相关疾病的发生发展机理和制定有效治疗方法有着重要意义。
【】
1 Adachi H, Tsujimoto M. Endothelial scavenger receptors. Prog Lipid Res,2006.
2 Armesilla AL, Vega MA. Structural organization of the gene for human CD36 glycoprotein. J Biol Chem,1994,269:18985-18991.
3 Okumura I, Lombart C, Jamieson GA. Platelet glycocalicin. II. Purification and characterization. J Biol Chem,1976,251:5950-5955.
4 Boullier A, Bird DA, Chang MK, et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci,2001,947:214-222; discussion 222-223.
5 Calvo D, Gomez-Coronado D, Suarez Y, et al. Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J Lipid Res,1998,39:777-788.
6 Ge Y, Elghetany MT. CD36: a multiligand molecule. Lab Hematol,2005,11:31-37.
7 Ikeda H. Platelet membrane protein CD36. Hokkaido Igaku Zasshi,1999,74:99-104.
8 Tao N, Wagner SJ,Lublin DM. CD36 is palmitoylated on both N- and C-terminal cytoplasmic tails. J Biol Chem,1996,271:22315-22320.
9 Huang MM, Bolen JB, Barnwell JW, et al. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci U S A,1991,88:7844-7848.
10 Fried M, Duffy PE. Maternal malaria and parasite adhesion. J Mol Med,1998,76:162-171.
11 Fried M, Nosten F, Brockman A, et al. Maternal antibodies block malaria. Nature,1998,395:851-852.
12 Fujioka H, Aikawa M. The molecular basis of pathogenesis of cerebral malaria. Microb Pathog,1996,20:63-72.
13 Asch AS, Liu I, Briccetti FM, et al. Analysis of CD36 binding domains: ligand specificity controlled by dephosphorylation of an ectodomain. Science,1993,262:1436-1440.
14 Asch AS, Silbiger S, Heimer E,et al. Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding. Biochem Biophys Res Commun,1992,182:1208-1217.
15 Siddiqui FA, Lian EC. Platelet-agglutinating protein p37 from a thrombotic thrombocytopenic purpura plasma forms complexes with platelet membrane glycoprotein IV (CD36). Biochem Int,1992,27:485-496.
16 Manaka J, Kuraishi T, Shiratsuchi A, et al. Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages. J Biol Chem,2004,279:48466-48476.
17 Meszaros AJ, Reichner JS, Albina JE. Macrophage-induced neutrophil apoptosis. J Immunol,2000,165:435-441.
18 Perutelli P, Mori PG. The human platelet membrane glycoprotein IIb/IIIa complex: a multi functional adhesion receptor. Haematologica,1992,77:162-168.
19 Puente Navazo MD, Daviet L, Ninio E,et al. Identification on human CD36 of a domain (155-183) implicated in binding oxidized low-density lipoproteins (Ox-LDL). Arterioscler Thromb Vasc Biol,1996,16:1033-1039.
20 Yamada Y, Doi T, Hamakubo T,et al. Scavenger receptor family proteins: roles for atherosclerosis, host defence and disorders of the central nervous system. Cell Mol Life Sci,1998,54:628-640.
21 Acton S, Rigotti A, Landschulz KT, et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science,1996,271:518-520.
22 Acton SL, Kozarsky KF,Rigotti A. The HDL receptor SR-BI: a new therapeutic target for atherosclerosis? Mol Med Today,1999,5:518-524.
23 Endemann G, Stanton LW, Madden KS, et al. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem,1993,268:11811-11816.
24 Acton SL, Scherer PE, Lodish HF,et al. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem,1994,269:21003-21009.
25 Febbraio M, Abumrad NA, Hajjar DP, et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem,1999,274:19055-19062.
26 De Vries HE, Buchner B, van Berkel TJ,et al. Specific interaction of oxidized low-density lipoprotein with macrophage-derived foam cells isolated from rabbit atherosclerotic lesions. Arterioscler Thromb Vasc Biol,1999,19:638-645.
27 De Winther MP, Hofker MH. Scavenging new insights into atherogenesis. J Clin Invest,2000,105:1039-1041.
28 Brundert M, Heeren J, Greten H,et al. Hepatic lipase mediates an increase in selective uptake of HDL-associated cholesteryl esters by cells in culture independent from SR-BI. J Lipid Res,2003,44:1020-1032.
29 Kawano K, Qin S, Vieu C, et al. Role of hepatic lipase and scavenger receptor BI in clearing phospholipid/free cholesterol-rich lipoproteins in PLTP-deficient mice. Biochim Biophys Acta,2002,1583:133-140.
30 Mao SJ, Yates MT,Jackson RL. Antioxidant activity and serum levels of probucol and probucal metabolites. Methods Enzymol,1994,234:505-513.
31 Singh U, Devaraj S,Jialal I. Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr,2005,25:151-174.
32 Morel DW, DiCorleto PE, Chisolm GM. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis,1984,4:357-364.
33 Truman LA, Ogden CA, Howie SE,et al. Macrophage chemotaxis to apoptotic Burkitt’s lymphoma cells in vitro: role of CD14 and CD36. Immunobiology,2004,209:21-30.
34 Linton MF, Fazio S. Macrophages, inflammation, and atherosclerosis. Int J Obes Relat Metab Disord,2003,27 Suppl 3:35-40.
35 Michelson AD, Wencel-Drake JD, Kestin AS,et al. Platelet activation results in a redistribution of glycoprotein IV (CD36). Arterioscler Thromb,1994,14:1193-1201.
36 Wintergerst ES, Jelk J, Rahner C,et al. Apoptosis induced by oxidized low density lipoprotein in human monocyte-derived macrophages involves CD36 and activation of caspase-3. Eur J Biochem,2000,267:6050-6059.
37 Rusinol AE, Yang L, Thewke D, et al. Isolation of a somatic cell mutant resistant to the induction of apoptosis by oxidized low density lipoprotein. J Biol Chem,2000,275:7296-7303.
38 Van Campenhout A, Heytens E, Van Campenhout C, et al. Cell-mediated LDL oxidation: the impact of transition metals and transferrin. Biochem Biophys Res Commun,2005,338:1617-16124.
39 Kalinowski L, Malinski T. Endothelial NADH/NADPH-dependent enzymatic sources of superoxide production: relationship to endothelial dysfunction. Acta Biochim Pol,2004,51:459-469.
40 Nakamura T, Saito Y, Ohyama Y, et al. Effect of cerivastatin on endothelial dysfunction and aortic CD36 expression in diabetic hyperlipidemic rats. Hypertens Res,2004,27:589-598.
41 Sasaki T, Yoshida K, Shimura H, et al. Inhibitory effect of linoleic acid on transformation of IEC6 intestinal cells by in vitro azoxymethane treatment. Int J Cancer,2006,118:593-599.
42 Yeh GC, Henderson JP, Byun J, et al. 8-Nitroxanthine, a product of myeloperoxidase, peroxynitrite, and activated human neutrophils, enhances generation of superoxide by xanthine oxidase. Arch Biochem Biophys,2003,418:1-12.
43 Jenkins AJ, Best JD, Klein RL,et al. Lipoproteins, glycoxidation and diabetic angiopathy. Diabetes Metab Res Rev,2004,20:349-368.
44 Mashima R, Witting PK,Stocker R. Oxidants and antioxidants in atherosclerosis. Curr Opin Lipidol,2001,12:411-418.
45 Azzi A, Stocker A. Vitamin E: non-antioxidant roles. Prog Lipid Res,2000,39:231-255.
46 Bocharov AV, Baranova IN, Vishnyakova TG, et al. Targeting of scavenger receptor class B type I by synthetic amphipathic alpha-helical-containing peptides blocks lipopolysaccharide (LPS) uptake and LPS-induced pro-inflammatory cytokine responses in THP-1 monocyte cells. J Biol Chem,2004,279:36072-36082.
47 Nicholson AC, Han J, Febbraio M, et al. Role of CD36, the macrophage class B scavenger receptor, in atherosclerosis. Ann N Y Acad Sci,2001,947:224-228.
48 Rigotti A, Trigatti BL, Penman M, et al. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A,1997,94:12610-12615.