分子印迹技术在中药提取分离中的应用

来源:岁月联盟 作者:彭晓霞,迟栋,龚来觐 时间:2015-06-05

【关键词】  分子印迹技术;中药;提取分离;综述

分子印迹技术(molecular imprinting technology,MIT)是20世纪末出现的一种高选择性分离技术,这种技术的基本思想是源于人们对抗体-抗原专一性的认识,利用具有分子识别能力的聚合物材料——分子印迹聚合物(molecule imprinting polymer,MIP)来分离、筛选、纯化化合物的一种仿生技术。因为制备的材料有着极高的选择性及卓越的分子识别性能,很快在固相萃取、人工酶学、手性拆分、生物传感器、不对称催化等方面得到了广泛的应用。笔者现主要对MIT在中药提取分离中的应用作一概述。

  1  分子印迹技术基本原理及聚合物的制备

  1.1  基本原理

  MIT是选用能与印迹分子产生特定相互作用的功能性单体,通过共价或非共价作用在溶剂中形成印迹分子-功能单体复合物,加入交联剂,在引发剂的引发下与带有特殊官能团的功能单体进行光或热的聚合,形成三维交联的聚合物网络,然后,用合适的溶剂除去印迹分子,在聚合物网络中形成空间和化学功能与印迹分子相匹配的空穴。这种空穴与印迹分子结构完全一样,可对印迹分子或与之结构相似的分子实现特异性的识别。

  1.2  分子印迹聚合物的制备

  分子印迹聚合物的制备过程可分为3步:第一步是印迹,将印迹分子和功能单体按比例混合,使其存在一定的分子间作用力;第二步是聚合,加交联剂,使复合物通过聚合反应形成聚合物;第三步是去除印迹分子,反复洗脱水解,使其形成具有一定空穴的分子印迹聚合物。根据功能单体和印迹分子间作用力的差异,MIP可分为以下3类。

  1.2.1  共价键法 

  也称预先组织法。印迹分子与功能单体通过可逆的共价键结合,加入交联剂共聚后,印迹分子通过化学方法从聚合物上断开,再用极性溶剂将印迹分子洗脱下来,使其形成具有高密度空腔的分子印迹聚合物。其主要的反应类型有形成硼酸酯、西佛碱、缩醛(酮)、酯等。共价键法的优点是空间位置固定,选择性高,峰展宽和脱尾少,常用于诸如糖类、氨基酸类、芳基酮类等多种化合物的特定性识别。由于共价键比较稳定,因而会生成较多的键合位点,印迹效率要高于非共价键印迹法。其缺点是功能单体选择有限,使模板限制较大且难以除去。因此,在选择模板时共价键键能必须适当,否则会使在识别过程中结合与解离速度偏慢,难以达到热力学平衡。

  1.2.2  非共价键法 

  也称自组装法。印迹分子与功能单体通过氢键、金属配位键、偶极作用、离子化作用、疏水作用、静电引力、范德华力等多种非共价键作用力生成分子自组装体,在合适的引发条件下生成聚合物,将聚合物研磨为粉末并用合适的溶剂除去模板分子。这种过程是模拟生物中多重分子间作用而具有立体效应。其优点是可使用多种功能单体,模板分子多样且易于用适宜的溶剂洗脱。这种方法制得的MIP因使用多种作用的结合,具有选择性高、分离能力强、识别速度快等特点。缺点是在聚合前,模板分子与单体可形成多种分子络合物,制备的MIP结合位点不均匀,常导致非特异性结合。在洗脱过程中,由于很难将聚合物中的模板分子除去,就会造成“模板渗漏”。但由于该法灵活方便,制备过程简单,使得此法比共价键法更适用。

  1.2.3  半共价印迹法 

  也称空间牺牲法。即聚合时功能单体和模板分子通过共价作用形成稳定的配合物,而在对印迹分子的识别过程中,仅通过非共价作用力来进行重新键合。这种方法由于模板分子和单体用共价键结合,使生成的聚合物结构完整,结合点均匀整齐。在洗脱过程中用强极性溶剂反复洗涤,从而解决了非共价健法的“模板渗漏”对待测物的影响。

  2  在中药提取分离中的应用

  由于含量低、结构复杂且类型多样,使中药活性成分分离困难。高效液相色谱法、硅胶柱色谱法等常规的分离方法溶剂消耗量大、效率低,且容易造成微量的有效成分丢失。MIT与上述色谱分离技术相比,具有分子识别性强、固定相制备简便快速、操作简单、性质比较稳定(耐酸碱,耐高温、高压等)、溶剂消耗量小、模板和MIPs都可以回收再利用等优点,在中药有效成分的提取分离中有很好的应用前景。

  2.1  活性成分的分离纯化

  目前所报道的MIT多用于黄酮类、多元酚类、生物碱类、甾体类和香豆素类的分离纯化。程氏等[1]以葛根素为模板分子、丙烯酰胺为单体、二甲基丙烯酸乙二醇酯(EDMA)为交联剂,制备葛根素MIP用于分离葛根提取液中的葛根素,并用静态吸附实验研究了葛根素MIP的吸附行为。结果表明,该MIP对模板分子葛根素印迹效果较强,得葛根素回收率为83%,远大于用大孔吸附树脂的提取效果。谢氏等[2]用非共价键法,以丙烯酰胺作功能单体、以强极性化合物槲皮素为模板,将槲皮素MIP用于银杏叶提取物水解液的分离,得槲皮素的回收率为89%,并用固相萃取从服用银杏叶提取物水解液的大鼠血浆中测定槲皮素含量,同样得到了较好的效果。李氏等[3]以中药黄栌的主要成分非瑟酮为印迹分子、丙烯酰胺为功能单体及乙二醇二甲基丙烯酸酯为交联剂,通过封管聚合法合成了分子印迹聚合物;通过优化清洗及洗脱条件,用固相萃取使非瑟酮与它的结构相似物槲皮素在柱上得到了很好的分离。向氏等[4]以反式白藜芦醇为模板分子,采用溶液聚合方法,合成白藜芦醇的MIP。结果表明,该印迹聚合物中形成了2类不同的结合位点。虎杖提取物经固相萃取,得到主要含白藜芦醇及少量结构与其相似的白藜芦醇苷组分。

  2.2  有效成分的富集及分离

  由于MIP具有从复杂样品中选择性地吸附模板分子或与其结构相近的某一族化合物的能力,因此,它非常适合用作固相萃取剂来分离富集复杂样品中的痕量被分析物,提高分析的精密度和准确性。朱氏等[5-6]以长春碱为模板分子,用本体聚合的方法制备长春碱MIP,通过对抽提溶剂的选择从而解决了“模板渗漏”的问题,并成功用于分离、富集长春花提取物中的长春碱。Suedee等[7]以奎宁为模版,合成印迹聚合物并将其应用于薄层色谱中,对奎宁分子对映体及结构类似物有良好的识别能力。卢氏等[8]利用奎宁在稀硫酸溶液中具有荧光的特点,采用荧光法研究了奎宁MIP的吸附特性和识别性能,结果其离解常数达1.08×10-3 mol/L,表观最大吸附量为131.8 μmol/g,进一步证明了Suedee的结论,为中药中奎宁物质的选择性富集及分析提供了一条新的途径。颜氏等[9]通过制备的槲皮素MIP,将其作为吸附剂填充成固相萃取柱,结合毛细管电泳仪,对比槲皮素及其结构相似物芦丁的混合物电泳图。结果表明,芦丁分子由于羟基与葡萄糖和鼠李糖相连,空间体积比槲皮素大,较难进入由模板分子槲皮素形成的分子印迹孔穴,而槲皮素是通过特异性识别作用吸附在印迹孔穴内。陈氏等[10]以咖啡因为模板,采用水溶液悬浮聚合法制备了用于色谱分离(作HPLC的固定相)的微米级MIP微球,通过改变HPLC的流动相缓冲溶液的pH值研究了咖啡因在MIPs柱上的容量因子(k)、分离因子(α)和印迹因子(β),说明MIPs在水溶液中对茶叶中的咖啡因进行了分离富集。以上研究结果表明,MIP可作为固相萃取的填充剂或固相微萃取的涂层材料来分离富集中药中的有效成分,以达到分离净化和富集的目的。

图片内容