浅析小学数学教学中读讲精练的思维训练
来源:岁月联盟
时间:2014-10-15
一、激发学生思维动机。
动机是人们“因需要而产生的一种心理反映”,它是人们行为活动的内动力。因此,激发学生思维的动机,是培养其思维能力的关键。教师如何才能激发学生思维动机呢?这就要求教师必须在教学中发挥主导作用,根据学生必理特点,教师有意识地挖掘教材中的知识,从学生自身生活需要出发,使其明确知识的价值,从而产生思维的动机。例如:在教学“按比例分配”这一内容时,首先要使学生明确学习这一知识的目的:平均分不合理的情况下,就产生了按比例分配这种新的分配方法。教学时可设计这样一个问题:一个车间把生产1000个零件的任务交给了张师傅和李师傅,完成任务要把500 元的加工费分给他们。
结果张师傅加工了600 个零件,李师傅加工了400 个零件。这时把500 元的加工费平均分给予他们合理吗?从而引发出学生探求合理的分配方法的思维动机。这样设计教学既渗透了“知识来源于生活”的数学思维,又使学生意识到学习知识的目的是为了解决生活和生产中的实际问题。学生的学习动机被激发起来了,自然会全身心地投入以后面的教学活动之中。可见,创设思维情境,激发学生的思维动机,是对其进行思维训练的重要环节。
二、理清学生思维脉络。
认知心理指出:“学生思维能力的发展是寓于知识发展之中的。”在教学中,一个问题,既要考虑它原有的知识基础,又要考虑它下联的知识内容。只有这样,才能更好地激发学生思维,并逐步形成知识脉络。我们教学的关键在于使学生的这种思维脉络清晰化,而理清思维脉络的重点就是抓住思维的起始点和转折点。
1、引导学生抓住思维的起始点。数学知识的脉络是前后衔接、环环紧扣的,并总是按照发生—发展—延伸的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,或从已地的经验开始,或从旧知识引入,这就是思维的开端。从学生思维的起始点入手,把握住思维发展的各个层次逐步深入直至终结。如果这个开端不符合学生的知识水平或思维特点,学生就会感到问题的解决无从下手,其思维脉络就不会在有序的轨道上发展。例如:在教学“按比例分配”这一内容时,从学生已地知识基础—平均分入手,把握住平均分与按比例分配的关系,即把一个数量平均分就是按照1 :1 的比例进行分配,从而将学生的思维很自然地引入按比例分配,为学生扫清了认知上的障碍。再如:解答按比例分配应用题时,从问题入手逐步深化认识,不但能够解决学生思维过程中无从下手的问题,而且有利于使学生的思维沿着起点发展,培养其思维的流畅性。当然,不同知识、不同学生的思维起点不尽相同,但不管起点如何,作为数学教学中的思维训练必须从思维的“发生点”上起步,以旧知识为依托,并通过“迁移”、“转化”,使学生的思维流程清晰化、条理化、逻辑化。
2、引导学生抓住思维的转折点。学生的思维有时会出现“卡壳”的现象,这就是思维的障碍点。此时教学应适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。例如:甲乙两人共同加工一批零件,计划甲加工的零件个数是乙加工的2/5。实际甲比计划多加工了34 个,正好是乙加工零件个数的7/9。这批零件共有多少个?学生在思考这道题时,虽然能够准确判断出2/5 和7/9 这两个分率都是以乙加工的零件个数为标准量的,但是,这两个标准量的数值并不相等,这样,学生的思维出现障碍。
上一篇:注重思想方法训练提高学生数学素质
下一篇:小学生学习几何知识常见缺陷及防治