对初中数学概念教学的认识
来源:岁月联盟
时间:2014-10-15
一、联系图形,澄清概念的形成
数学概念是从具体、形象的实践中抽象、概括出来的,因此我们要联系图形,弄清概念的形成过程。这样有利于解决其他有关的问题,是掌握数学概念最重要和最有效的方法。
例如,学习“角”这个概念时,教师可以拿一个圆规,把圆规的两腿张开,然后指出,圆规的两腿形成的数学图形就是“角”。那么我们怎样用数学语言来描绘“角”呢?此时先别着急,可以把事物画在黑板上,让同学们观察,抽象出概念,于是得到:有公共端点的两条射线组成的图形叫做”角”。同时要说明:角指的是两条射线间的部分。教师可以把圆规的两腿拉大、拉小,说明:这是角的大小在发生变化,角的大小与角的两边的长短无关,因为其两边是射线。然后教师继续进行演示,把圆规一端固定,沿定点把圆规旋转,学生不难发现在旋转过程中也形成了“角”。于是“角”还可以看作是一条射线绕它的端点旋转所形成的数学图形,这样“角”的另一个概念又显而易见。
二、抓准字眼,理解概念的含义
学习数学概念时,切忌死记硬背,关键是理解体会。除从整体上认识概念外,还要特别注意对概念本身和概念中的关键词进行分析、体会,真正弄清这些关键字、词的深刻含义,这对深化概念的理解是至关重要的。
例如,“线段的中点”这个概念中的“中”字、“角的平分线”中的“平分”这个词等等,只要把握住了这些字词是针对谁说的、其含义是什么,这些概念就基本理解并记住了,不用去强行记忆。
三、巧用比较,区分概念的异同
俗话说,没有比较就没有鉴别。数学概念也是这样,有些相关概念一字之差意义就大不相同,为了明确区分这些概念,我们可以将这些概念列出,逐个进行比较,从比较中得到概念的内在联系和本质区别,这样可以更准确地理解它们的含义。
例如“圆心角”和“圆周角”,其本质的区别是其顶点所在的位置不同,“圆心角”的顶点是圆心,而“圆周角”的顶点是圆上任何一个点;其内在联系也不言而喻,都是与园有关的角。
四、引入范例,挖掘概念的内涵
学生对概念有了初步的理解后,往往对一些关键的地方有些模糊认识,这样就会影响学生对知识的理解和运用。为了让学生真正深刻理解概念的内涵,教师应适当地举一些反例让学生判断,这样既可以提高学生对关键词语的理解能力,又能使学过的数学概念在头脑中更清晰、更明白。
上一篇:轮船会不会触礁
下一篇:巧变条件解工程应用题