方程模型与应用题教学
来源:岁月联盟
时间:2014-10-15
首先要认真审题,分清题中哪些是已知量,哪些是未知量,已知量与未知量之间有怎样的关系,这些关系是直接给出的还是间接给出的。对于条件较多、关系复杂的应用题,可采用列表或画图的方式,仔细分析,加深理解题意。
其次,要重视“用未知数表示代数式”这一环节。一个应用题往往含有多个量,当选择某一未知量为未知数后,就要用这个未知数表示其它相关的量,不要设完未知数就立即进入布列方程的工作。
第三,搞清一些常见的基本数量关系式,并熟悉它们的变形,这对解决常见的应用问题是很有好处的。要寻找题中的等量关系,这是布列方程的关键所在。可按“等量关系语”去考虑,如“多”、“少”、“早”、“迟”、“是”、“为”、“比”等;或者按基本公式去考虑;或者按各类应用题中常用的等量关系去考虑,如“加水前含盐重量=加水后含盐重量”等;也要注意挖掘隐藏的等量关系。抓住了这一点,问题就容易解决了。
初中数学课程中方程模型的运用十分广泛,其中的许多问题都能采用数学方程模型的方法来解决。教学时,指导学生将实际问题中的文字语言用方程(组)来表示,解出方程组,问题便迎刃而解了。同时要讲清列方程(组)的关键——找等量关系,此即为构造方程模型的关键。
数学的生命力在于它能有效地解决现实世界向我们提出的各类实际问题,而数学模型正是联系数学与现实世界的桥梁。如何将现实问题转化为数学模型,这是对中学生创造性地解决问题的能力的检验,也是初中数学教学的重要任务。因此,在初中数学教学中应给学生贯穿数学模型的思想,并指导学生去解决它们,同时要加强学生在这方面的学习和训练。
初中数学内容包括代数、几何、三角等几个部分,它们都各自构成了数学模型。每一个这样的数学模型又可分为若干个小的数学模型,这许许多多的数学模型,经过教法设计和逻辑处理后,有机地结合起来,便构成了初中数学的知识系统。依此观点,可以认为初中数学教学实际上是数学模型的教学,而方程模型是重要的数学模型之一,因此要在初中数学教学中加强这方面的指导。
参考文献
[1]王仲春 等 编著《数学思维与数学方法论》.北京:高等教育出版社,1989。
[2]赵振威 等 编著《中学数学教材教法》.上海:华东师范大学出版社,1994。
[3]北京师范大学出版社 编著《九年义务教育三年制初级中学教科书·数学》.北京:人民教育出版社,2007-2010。
[4]北京师范大学出版社 编著《九年义务教育三年制初级中学·数学教师教学用书》.北京:人民教育出版社,2007-2010。
上一篇:欲善其事,先利其器
下一篇:《探索二次函数图像平移的规律》