数学课堂中问题引入法初探

来源:岁月联盟 作者: 时间:2014-10-15
        三、实验法
        案例:《椭圆及其标准方程》第一课时的设计如下:课前,将事先准备好的圆形纸片给每位同学发一张,让大家按这样的步骤进行,①在圆内部任意找一个不同于圆心的点A;②在圆周上30个等分点,分别记为B1、B2、…、B30;③折叠圆纸片,使圆周上的点B1与点A重合,展开纸片后得到一条折痕;④重复上一步骤,使圆周上其余各点与A点重合,得到30条对应的折痕;⑤最后展开纸片,可以发现未被折痕覆盖到的区域正是一个椭圆的形状。
        这样的引入方法比之常规引入法更新颖、更具吸引力,使学生感性地认识椭圆这一几何图形,尤其是通过操作实验,营造了“做”数学的氛围,为学生创造了良好的智力环境,促使学生积极主动地参与进来。
        四、整合法 
         
        这样的处理与教材中先介绍“点斜式”再得出“斜截式”的顺序不同,但这样的顺序却更符合学生认知规律,由旧知得出新知,循序渐进,体现了初高中数学的巧妙衔接。整合就是“打乱”教科书上线性排列的知识,注重不同领域内容的整合、数学与其他学科知识的整合、知识与情境的整合、知识与方法的整合、知识与价值的整合,有助于学生领悟数学不是一堆孤立技巧和任意法则的集合,有利于学生对数学内在本质的认识,这是将形式化数学的学术形态转化为易于学生接受的教育形态的艺术之一。
        教学实践表明,课堂教学中一个精彩的、匠心独具的引入设计是教学设计的关键,它是支撑和激励学生学习的源泉,能促使学生“自主”学习,是实现教学过程中数学交流的起因,是学生实现创新的基础和动力。引入问题是实施创新教学的条件,是改变学生学习方式的切入点。引入问题必须着眼于应用和创新,必须巧妙精当、真切感人、能够触到学生的内心深处。这样设计引入问题,就能充分发挥学生们的想象力,让问题处于学生思维水平的最近发展区。当然,这更需要教师具备“编剧的本领”、“导演的才能”和“演员的素质”,才能成功地引导学生入境受情。因此,教师只有解放思想,更新观念,完整、准确地把握教学内容,具有教育学、心理学等各种理论,掌握各种现代教学技术手段,在工作中不断反思总结,才能真正“将知识的学术形态转化为教育形态”。