浅谈初中平面几何学习技巧

来源:岁月联盟 作者: 时间:2014-10-15
        几何学是人类实践的产物。它的基本知识在生产、生活和科学研究中有着广泛的应用,同时又是学习其他学科的基础。学习几何还能培养我们的空间想象能力和逻辑思维的能力,因此,我们要努力学好这门课。要学好几何,必须抓住以下几个环节。
        一、概念和定理的学习
        在平面几何里要接触大量的概念和定理,这些概念和定理是学习几何的基础,是进行推理论证的依据。
        1、概念要注重理解它们的含义,会画其图形,并能用几何语言表达。例如:将一条线段分成两条相等的线段的点,叫作线段的中点。不能满足于记住,而要进一步结合图形用几何语言表达概念的含义。如点A、B、C在同一直线上, ∵AC=BC ∴C是线段AB的中点。反过来,如果C是线段AB的中点,则AC=BC,或者AC=BC= AB,AB=2AC=2BC。由此可得对于线段AC、BC、AB三条线段任知道一条线段,根据上述关系式可得其他线段。
        2、定理不能死记硬背,更不能以为自己背过了就会应用。必须分清其条件和结论以及适用的图形,否则会使理由说的不充分,证得的结论不可信。例如:对角线相等的平行四边形是矩形。条件有二;(1)对角线相等(2)平行四边形(即对角线互相平分)这样才能得到矩形结论,两个条件缺一不可。若分不清就会造成“顺次连结某四边形各边中点得到的四边形是菱形,则原四边形是矩形”的错误。应是对角线相等的四边形,包括矩形,但不一定是矩形。
        二、例题和练习题的学习
        通过例题和练习题的学习,不仅能加深对概念、定义、定理、公式和法则等基础知识的理解,加强解题技巧的培养,而且在提高分析问题、解决问题的能力,开发智力等方面能发挥独特的效应。有些同学“课堂上听得懂,一做作业就头疼”的毛病,就是对例题和练习题处理不当,每一个数学题目就像一个完整的机器,有许多个小零件组成,哪一个部位有问题都很难达到目的。例题起了个导航的作用。在教师讲例题前,我们应充分思考自己动脑动手,自己寻找突破口,然后听教师讲解,进行对比比较,概括归纳,在此基础上总结出归律。对于练习题,我们不能满足于会做某个题,而应达到一题多解,举一反三,触类旁通的程度。
        三、证题方法的学习
        我们跟老师学习的是方法,而不是学会某个题,几何证题关键是分析。不会分析就不会证题,几何证题的分析思路可分两条。
        一条是分析法。即根据已知或题设推到结论,不过几何题目一步就能推出的很少,由条件引发联想,有时会有几个中间结果。 
已知中的条件不只一个时,常从其中一个条件联想,对每一个中间结果随时联想,直到结论,把这个过程写出来就是证明。
        另一条是综合法。从结论入手,寻找结论成立须具备的条件,已知中已有时,这样的题不多,也简单。若没有把这些条件作为结论,继续倒着推上去,最后与已知条件一致时即可。不过注意有些题目需要两头凑。