浅谈二次函数在 高中阶段的应用
来源:岁月联盟
时间:2014-10-15
一、进一步深入理解函数概念
初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射?:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为?(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:
类型1:已知?(x)= 2x2+x+2,求?(x+1)。这里不能把?(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。
类型2:设?(x+1)=x2-4x+1,求?(x)。这个问题理解为,已知对应法则?下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。
一般有两种方法:(1)把所给表达式表示成x+1的多项式。?(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得?(x)=x2-6x+6。(2) 变量代换:它的适应性强,对一般函数都可适用。令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而?(x)= x2-6x+6。
二、二次函数的单调性,最值与图象
在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-b/2a ]及[-b/2a ,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。
类型3:画出下列函数的图象,并通过图象研究其单调性。
16
首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。
上一篇:分析和解决数学问题能力的培养
下一篇:数学问题情境创设之我见