从阅读材料看新课程下的数学建模教学
来源:岁月联盟
时间:2014-10-15
一、引入——孕育数学模型
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上的,因此,学生已有的认知经验基础是教师教学活动的起点。
问题情景:如果一条流水线上有依次排列的10台机床在工作,我们要设置一个零件供应站P,使这10台机床到供应站P的距离总和最小,这个零件供应站应设在何处呢?
二、提炼——建立数学模型
通过书上的建模过程,体现了化归的数学思想,我们可以进一步把书本 知识拓展为:
一般地,如果n为偶数,P可设在第n/2+1台之间的任何地方;如果n为奇数,P应设在第(n+1)/2台的位置。
现在我们回答第一个问题,当n=10时,零件供应站在第5台和第6台之间,以这条直线画数轴,n个供应站在数轴上的n个点(如图),设供应站的坐标依次为a1、a2、a3、…、an,且a1≤a2≤a3≤…≤an,问题转化为:在该数轴上找一点P,其坐标为x,当x取何值时,y=∣x-a1∣+∣x-a2∣+…+∣x-an∣取得最下值。

这就是供应站最佳位置的数学模型。
三、拓展——揭示模型本质
多次重复和简单模仿并未能真正掌握一个数学模型,只有掌握了模型的特征和本质,才能熟练、灵活地应用数学模型。因此,模仿之后的延伸和拓展(意在指示模型的本质)是数学建模教学过程中的不可或缺的一体,它是模型应用创新的前提。
例1:如图所示,在一条笔直的马路上有7个村庄,其中村庄A、B、C、D、E、F 离城市的距离分别为4、10、15、17、19、20KM,而村庄G正好是AF的中点。现需要在某个村庄建一个活动中心,使各村到活动中心的距离之和最短,则活动中心应建 在( )
(A)A处 (B)B处 (C)G处 (D)E处

上一篇:创设教学情境 激发数学兴趣
下一篇:数学转变“错误观念”教学实施策略