数学中的情境教学三步曲
来源:岁月联盟
时间:2014-10-15
1.有利于激发学生的求知欲,有利于培养学生的探索精神。
对于上述的几何证明题,学生都能给出正确的解答过程,但我诱导学生不要停留在命题的愿意上,分组讨论,试更换命题的条件,看结论是否依然成立。结果学生给出下面几种命题:
第一类:将“第三边上的高线” 换成“第三边上的角平分线”或“第三边上的中线”。
第二类:将“两边”换成“两角”,并将“第三边”换成“两角的夹边”。
第三类:将第一类、第二类命题综合成一个命题“一个三角形中的两边(或两角)与另一个三角形中的两边(或两角)对应相等,第三边上(或两角的夹边上)的派生线也对应相等,则这两个三角形全等”(这里派生线是指三角形的中线、高线、角平分线)。
给出上面几个命题以后,学生自己写出了证明过程,此时他们积极性很高,毕竟这些命题都是他们自己提出、自己解决的,因此我感受到:“教学生问比教学生答更重要”。但这几个命题中学生对“两角及夹边上的中线对应相等的两个三角形全等”的证明有困难,我告诉学生,学习相似三角形之后,这个命题的证明非常简单。
2.有利于培养学生的自信心,有利于培养学生的创新意识。
教与学都是一个漫长而艰辛的过程,但只要有坚定的意志、努力的付出、正确的思想和方法作指导,就一定有收获,在学习相似三角形之后,学生自己证明了“两角及夹边上的中线对应相等的两个三角形全等”这个命题的正确性,并且他们前述几个命题都可用相似三角形的性质来证明,过程更简洁,更为使我惊诧的是,学生未在我的指导下自己又发现了另一个命题的正确性:“若两个相似三角形中,有一条对应的派生线相等,则这两个三角形全等”,从这个命题他们又发现,将“派生线”换成“三角形的边”命题也成立。因此,这个命题最后成为:“若两个相似三角形中,有一条对应边(或派生线)相等,则这两个三角形全等”,对于学生发现的这个问题的正确性,我当然是知道的,但出乎意料之外的是,他们是在集体讨论的情况下自己总结出的命题,这当然归功于教学过程中情境创设的教学功能。
3.有利于培养学生的合作精神,有利于培养学生的集体主义思想。
学生在总结出前述几何命题的正确性之后,自信心倍增,我借助此时的气氛,激发学生,告诉学生如何在学习中,相互学习、相互交流、互相讨论、互相帮助、共同总结发现问题,从而解决问题,应用问题的结论。正所谓“三人行,必有我师”,“两人智慧胜一人”。
如果我们在教学过程中,创设情境,让学生自己提出问题,自己解答,反客为主。从作为问题的接受者转变为问题的提出者,进而解决问题,这样对培养学生的创新意识和创造性思维能力不是更有作用,更有意义吗?
上一篇:一道课本问题的变式训练
下一篇:浅谈提高学生运算能力的方法