培养学生的数学思维品质的点滴认识
来源:岁月联盟
时间:2014-10-15
对于那些容易混淆的概念,如正数与非负数、锐角和第一象限的角、充分条件和必要条件等等,可以引导学生通过辨别对比,认清概念之间的联系与区别,在同化概念的同时,使新旧概念分化,从而深刻理解数学概念。通过变式教学揭示并使学生理解数学概念、方法的本质与核心。在解题教学中,引导学生认真审题,发现隐蔽关系,优化解题过程,寻找最佳解法等等。
如案例:亓宁同学在解完“梯形ABCD中,点E是腰AB上一点,在腰CD上求作一点F,使CF:FD = BE:EA”之后提出:“老师,如果E点在底边上,如何在另一底上找到F,我有一种方法,不知对否?
作法:1. 连结AC; 2. 作EO // DC交AC于O; 3. 作OF // AB交BC于F。 AE:ED = BF:FC。 ” 同时,另一位学生提出同样的问题,写道:“如果,在梯形ABCD中,点E是底边上一点,那么在另一底边找一点F,使AE:ED = BF:FC,应怎样找?” 两位学生对同一个题目,提出了相同的问题,前者解决了问题,但不能用准确的数学语言表述问题,后者虽没有找到解决问题的方法,但能准确的描述问题,两位学生都良好的运用了直觉思维,这本身就是一种创新思维,我及时公布了两位的猜想,并鼓励他们的这种主动猜想的创新精神,公布之后,同学们反映强烈,并进行了广泛的讨论,并且在讨论中思维更加深刻,问题得到引伸,方法也出现了多种。一位学生对在讨论中提出的新方法给出了证明,他写道:“今天小凡说,已知梯形ABCD,E是底边的一点,延长腰交于F,连结EA交AB与G就是昨天亓宁要找的点。我觉得它说的是对的;证明如下:……(证明略)” 我也即时公布了这位学生提供的小乔的发现和他的证明,并说,小凡能想到这种方法,是他对解过的题目作了深刻的反思,从而对做过的题目有深刻的映象,自然很容易想到这种方法,因此,同学们应向他学习,解题以后不要停止,一定要多作反思。
接下来的几天中,都有同学围绕着这个问题继续思考,并且有的同学还将此问题作了进一步引伸,如任静在反思中写道:“任意多边形,知道一边上一点,就可以由亓宁那种方法,在其它任一边上找到一点,使与分得的线段的比等于这点分得的这边上的两条线段的比,只要先把多边形变成三角形后就行。
对吗?”我指导道:“你已推广了亓宁提出的命题,很好,且你是对的,请试一试能不能给出证明”。鼓励学生结合解题提出问题,既能充分发挥学生的主体性,又能形成师生互动、生生互动的教学情境,还能培养学生的不断探索的精神,从而使学生的创新意识得到保护和培养。这无疑对学生“心态的开放,主体的凸现,个性的张显”是十分有益的。
数学思维的敏捷性,主要反映了正确前提下的速度问题。因此,数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,提高所掌握的数学知识的抽象程度。因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快。
上一篇:数学思想方法在数学教学中的渗透
下一篇:浅谈《标准》中几何证明教学