训练与技能

来源:岁月联盟 作者: 时间:2014-10-15
        第三,及时矫正错误,注意总结数学活动的经验和教训.
        由于数学技能中所含的系列操作具有相对稳定的顺序,如果一种操作出现错误并一直错下去,那么就会影响后续的操作.因此在学生练习的过程中,教师要注意辨析学生的错误,并及时纠正.总之要与学生一起,认真总结练习过程中的经验,教训,以帮助学生迅速正确地掌握数学技能.
        三、适时地渗透数学思想方法
        一般说来,数学思想指在具体的认识过程中提炼出来的观念与意向,是一种高层次的认知,具有普遍意义的相对稳定的特征,放在后续的学习活动中对主体的思想策略水平有较大影响.但在教学实践中如何渗透数学思想方法,如何创造机会给予学生这种感悟,却值得商榷.这种高层次的认知策略与操作阶段的学习完全不同,不能仅凭一两节课或几个例题的讲解就能使使学生完全接受和掌握,也不能依靠生硬的说教或学生大题量的训练.实践表明,不少学生尽管知道“特殊化法”、“平移法”、“化归法”等名词,尽管会用这些方法解一些题,但并不理解其实质.事实上,数学思想的形成必须在自己的知识经验基础上,通过体验、感悟、提炼等理性思考,是长期的.且根据个性差异,思维观念可能会不同.因此数学中渗透数学方法不能直接灌输,而应当针对学生的年龄特征,结合数学内容自然而然,潜移默化地进行,以便达到“润物细无声”的效果.
        四、 在训练中引导学生纵向“衔接”与横向“配合”
        数学知识之间联系紧密、复杂,每一个知识点如“网的结点”,与横向、纵向都紧密相连.学生只有掌握纵向“衔接”的技能,才能解决“环环相扣”的数学问题;同时,联系横向所学的数学知识,才能在解决数学中“得心应手”地运行.
        五、在合理安排训练的同时,还要要加强变式训练
        为了分数,大量的练习,重复训练,但忽略了在形式变异中把握不变.在训练中类化,才是发展能力的基础.类化训练中,变式是关键.所谓变式,就是在其它有效学习条件不变的情况下,概念与规划应用例证的变化.对于数学来说,就是改变问题的本题的非本质特征,保留其结构成分不变.变式训练的本意是让学生在训练过程中掌握本质性的内容,其中有两层含义:一是通过非本质特征的变化题组训练,使学生熟悉、熟练新的类化操纵方式;二是通过变式训练,在形式变异中把握不变的东西,将操作方式内化以促进规则运用的纵向迁移.