七年级数学期末复习:一元一次不等式及其应用

来源:岁月联盟 作者: 时间:2014-10-15
        ◆知识讲解
        1.一元一次不等式的概念
        类似于一元一次方程,含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式.
        2.不等式的解和解集
        不等式的解:与方程类似,我们可以把那些使不等式成立的未知数的值叫做不等式的解.
        不等式的解集:对于一个含有未知数的不等式,它的所有的解的集合叫做这个不等式的解集.它可以用最简单的不等式表示,也可以用数轴来表示.
        3.不等式的性质
        性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a>b,那么a±c>b±c.
        性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或 > ).
        性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a>b,c<0,那么ac<bc(或 > ).
        不等式的其他性质:①若a>b,则b<a;②若a>b,b>c,则a>c;③若a≥b,且b≥a,则a=b;④若a≤0,则a=0.
        4.一元一次不等式的解法
        一元一次不等式的解法与一元一次方程的解法类似,但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.
        5.一元一次不等式的应用
        列一元一次不等式解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中“不等”关系的关键词语,或从题意中体会、感悟出不等关系十分重要.
        ◆例题解析

        【点评】应用特值法来解题的条件是答案必须确定.如,当a>1时,A与2a-2的大小关系不确定,当1<a<2时,当a>2a-2;当a=2时,a=2a-2;当a>2时,a<2a-2,因此,此时a与2a-2的大小关系不能用特征法.