化归思想在立几中的探究
来源:岁月联盟
时间:2014-10-15
一、题型的化归:
1、化归为基本题型:
立体几何中我们知道有一些基本题形是我们平时经常研究的,如:正方体、四个面全为直角的三棱锥中的问题等。
棱长为a的正四面体的四个顶点均在一个球面上,求此球的表面积与体积.
解:以正四面体的每条棱作为一个正方体的面的一条对角线构造如图所示的正方体,则该正四面体的外接球也就是正方体的外接球.
分析:联系正四面体,如图3,PA、PB、PC两两成600,高PO与棱PA所成的角即为图8中PO与PA所成的角,而在正四面体中,PO与PA所成角的正弦值为 ,故PE= cm。
3、几何问题代数化
如图4,在长方形 中, , , 为 的中点, 为线段 (端点除外)上一动点.现将 沿 折起,使平面 平面 .在平面 内过点 作 , 为垂足.设 ,则 的取值范围是 .
本题在解的过程中引进了变量 ,从而将求 的范围问题转化为求关于函数值域问题。
二、图形的化归
1、化归为平面几何问题