化归思想在立几中的探究

来源:岁月联盟 作者:陈夕忠 时间:2014-10-15
        我们在解决代数问题时经常使用化归思想方法。数学解题过程实际上就是不断的进行化归的过程,化归是数学研究中普遍采用的一种思想,也是解决实际问题的关键,而这一思想的应用在立体几何的学习中尤为突出,不论是线线、线面、面面之间平行、垂直关系的转化,空间图形的证明与计算转化为平面图形的证明与计算,还是空间几何关系转化为向量的运算关系,几乎贯穿于立体几何的全部领域,而数学课堂上学生往往只注意了这些知识的学习,注意了新知识的增长,并未曾注意联想到这些知识的观点以及由此出发产生的解决问题的方法和策略,所以要增强学生对各种关系转化的意识是关键,而这一意识的培养、增强全靠教师在教学中帮助学生有效地、有目的地进行化归,从而提高解题能力。不妨先从实例来作研究。
        一、题型的化归:
        1、化归为基本题型:
        立体几何中我们知道有一些基本题形是我们平时经常研究的,如:正方体、四个面全为直角的三棱锥中的问题等。
        棱长为a的正四面体的四个顶点均在一个球面上,求此球的表面积与体积.
        解:以正四面体的每条棱作为一个正方体的面的一条对角线构造如图所示的正方体,则该正四面体的外接球也就是正方体的外接球. 
         
         
        分析:联系正四面体,如图3,PA、PB、PC两两成600,高PO与棱PA所成的角即为图8中PO与PA所成的角,而在正四面体中,PO与PA所成角的正弦值为 ,故PE= cm。
        3、几何问题代数化
        如图4,在长方形 中, , , 为 的中点, 为线段 (端点除外)上一动点.现将 沿 折起,使平面 平面 .在平面 内过点 作 , 为垂足.设 ,则 的取值范围是             .  
         
         
        本题在解的过程中引进了变量 ,从而将求 的范围问题转化为求关于函数值域问题。
        二、图形的化归
        1、化归为平面几何问题