课堂上如何培养学生的思维品质
来源:岁月联盟
时间:2014-10-15
那么,在数学课堂教学中怎样才能培养学生的思维潜能,提高学生的思维品质呢?下面就本人在数学教学中的几点体会与同行们交流:
一、 一题多解,培养学生思维的开阔性.
在教学过程中,有很多的数学习题,都有两种或两种以上的解法,都能从不同的途径得到正确的答案,只要方法得当.这样的习题可以培养学生思维的开阔性,在一题多解的同时,可使各种知识在同一题得到巩固,从而起到综合复习的效果.
例1:三角形中位线定理:如果E、D分别是⊿ABC两边AB、AC的中点,那么DE∥BC,DE= 1/2BC.
出示本题后,教师要求学生独立地、尽可能多地探讨证明的方法,两分钟后陆续有学生举手表示已经有了证明的思路,老师便让学生把不同的证明方法、过程写到黑板上.
【证法一】: 如图1,延长DE到点E/,使EE′=DE,易证⊿ADE≌⊿BE′E,得∠ADE′=∠BE′D,BE′=AD=CD,所以BE′∥AD,由此可得四边形DCBE是平行四边形,所以DE′∥BC,DE′= BC,即DE∥BC,DE= 1/2BC.原命题得证.
【证法二】: 如图2,将⊿ADE以点E为旋转中心,顺时针旋转180度,到⊿BEE′的位置,则∠DEE′=1800,∠ADE′=∠BE′D,BE′=AD=CD,所以BE′∥AD,由此得四边形DCBE是平行四边形.原命题得证.
【证法三】:如图3,延长DE到点E/,使EE′=DE,则四边形ADBE′对角线互相平分,所以四边形ADBE′是平行四边形,则BE′∥AD, BE′=AD=CD,所以四边形DCBE也是平行四边形.原命题得证.
【证法四】:如图4,过点E作EN∥AC,过点A作AN∥CB交于点N,EN交CB于点M,则四边形ACMN是平行四边形,⊿BEM⊿AEN,所以MN∥AC,MN﹦AC,EN=EM,AN=BM,由此EM=CD,所以四边形CDEM是平行四边形,DE∥CB,DE=CM=AN=BM.原命题得证.
对于以上的四种不同解法的分析、讨论,可以知道从习题的解法上发散,有利于知识之间的转化和学习的迁移,有利于开发学生的智力,拓展学生的解题思路,发挥学生的想象空间,充分激发学生潜能;通过解法的比较,有助于帮助学生选择适合自己的方法,同时也告诉同学们,在问题的解决上,要从不同的角度去分析问题,寻找解决问题的途径.
二、 一题多变,培养学生思维的灵活性.
在数学课堂上,往往有很多意想不到的收获,这种收获不单纯是来自于学生的不同解法,有时候来自于学生的联象、讨论、提问.
例2 (1)如图5,在⊿ABC中,BP、CP分别平分∠ABC、∠ACB,已知∠A=n0,求∠BPC的度数.这道习题是苏科版八年级下册151页探索研究18题
上一篇:放飞思维 培养学生的创新能力
下一篇:谈中间桥梁证明几何问题