FreeBSD操作系统的boot2阶段

来源:岁月联盟 编辑:zhu 时间:2008-01-21
FreeBSD操作系统的boot2阶段内容简介:【FreeBSD教程】 也许你想知道,为什么boot2是在boot0之后,而不是在boot1之后。事实上,也有一个512字节的文件boot1存放在目录/boot里,那是用来从一张软盘引导系统的。从软盘引导时,boot1起着boot0对硬盘引导相   【FreeBSD教程】也许你想知道,为什么boot2是在boot0之后,而不是在boot1之后。事实上,也有一个512字节的文件boot1存放在目录/boot里,那是用来从一张软盘引导系统的。从软盘引导时,boot1起着boot0对硬盘引导相同的作用:它找到boot2并运行之。
  
  你可能已经看到有一文件/boot/mbr。这是boot0的简化版本。mbr中的代码不会显示菜单让用户选择,而只是简单的引导被标志的分区。
  
  实现boot2的代码存放在目录sys/boot/i386/boot2/里,对应的可执行文件在/boot里。在/boot里的文件boot0和boot2不会在引导过程中使用,只有boot0cfg这样的工具才会使用它们。boot0的内容应在MBR中才能生效。boot2位于可引导的FreeBSD分区的开始。这些位置不受文件系统控制,所以它们不可用ls之类的命令查看。
  
  boot2的主要任务是装载文件/boot/loader,那是引导过程的第三阶段。在boot2中的代码不能使用诸如open()和read()之类的例程函数,因为内核还没有被加载。而应当扫描硬盘,读取文件系统结构,找到文件/boot/loader,用BIOS的功能将它读入内存,然后从其入口点开始执行之。
  
  除此之外,boot2还可提示用户进行选择,loader可以从其它磁盘、系统单元、分区装载。
  
  boot2 的二进制代码用非凡的方式产生:
  
  sys/boot/i386/boot2/Makefile
  boot2: boot2.ldr boot2.bin ${BTX}/btx/btx
    btxld -v -E ${ORG2} -f bin -b ${BTX}/btx/btx -l boot2.ldr     -o boot2.ld -P 1 boot2.bin
  这个Makefile片断表明btxld(8)被用来链接二进制代码。BTX表示引导扩展器(BooT eXtender)是给程序(称为客户(client))提供保护模式环境、并与客户程序相链接的一段代码。所以boot2是一个BTX客户,使用BTX提供的服务。
  
  工具btxld是链接器,它将两个二进制代码链接在一起。btxld(8)和ld(1)的区别是ld通常将两个目标文件链接成一个动态链接库或可执行文件,而btxld则将一个目标文件与BTX链接起来,产生适合于放在分区首部的二进制代码,以实现系统引导。
  
  boot0执行跳转至BTX的入口点。然后,BTX将处理器切换至保护模式,并预备一个简单的环境,然后调用客户。这个环境包括:
  
  虚拟8086模式。这意味着BTX是虚拟8086的监视程序。实模式指令,如pushf, popf, cli, sti, if,均可被客户调用。
  
  建立中断描述符表(Interrupt Descriptor Table, IDT),使得所有的硬件中断可被缺省的BIOS程序处理。建立中断0x30,这是系统调用关口。
  
  两个系统调用exec和 exit的定义如下:
  
  sys/boot/i386/btx/lib/btxsys.s:
      .set INT_SYS,0x30    # 中断号
  #
  # System call: exit
  #
  __exit:   xorl 陎,陎     # BTX系统调用0x0
      int $INT_SYS      #
  #
  # System call: exec
  #
  __exec:   movl $0x1,陎     # BTX系统调用0x1
      int $INT_SYS      #
  BTX建立全局描述符表(Global Descriptor Table, GDT):
  
  sys/boot/i386/btx/btx/btx.s:
  gdt:    .word 0x0,0x0,0x0,0x0    # 以空为入口
      .word 0xffff,0x0,0x9a00,0xcf  # SEL_SCODE
      .word 0xffff,0x0,0x9200,0xcf  # SEL_SDATA
      .word 0xffff,0x0,0x9a00,0x0 # SEL_RCODE
      .word 0xffff,0x0,0x9200,0x0 # SEL_RDATA
      .word 0xffff,MEM_USR,0xfa00,0xcf# SEL_UCODE
      .word 0xffff,MEM_USR,0xf200,0xcf# SEL_UDATA
      .word _TSSLM,MEM_TSS,0x8900,0x0 # SEL_TSS
  客户的代码和数据始于地址MEM_USR(0xa000),选择符(selector) SEL_UCODE指向客户的数据段。选择符 SEL_UCODE 拥有第3级描述符权限(Descriptor Privilege Level, DPL),这是最低级权限。但是INT 0x30 指令的处理程序存储于另一个段里,这个段的选择符SEL_SCODE (supervisor code)由有着治理级权限。正如代码建立IDT(中断描述符表)时进行的操作那样:
  
      mov $SEL_SCODE,%dh   # 段选择符
  init.2:   shr %bx       # 是否处理这个中断?
      jnc init.3     # 否
      mov %ax,(%di)      # 设置处理程序偏移量
      mov %dh,0x2(%di)    # 设置处理程序选择符
      mov %dl,0x5(%di)    # 设置 P:DPL:type
      add $0x4,%ax      # 下一个中断处理程序
  所以,当客户调用 __exec()时,代码将被以最高权限执行。这使得内核可以修改保护模式数据结构,如分页表(page tables)、全局描述符表(GDT)、中断描述符表(IDT)等。
  
  boot2 定义了一个重要的数据结构:struct bootinfo。这个结构由 boot2 初始化,然后被转送到loader,之后又被转入内核。这个结构的部分项目由boot2设定,其余的由loader设定。这个结构中的信息包括内核文件名、BIOS提供的硬盘柱面/磁头/扇区数目信息、BIOS提供的引导设备的驱动器编号,可用的物理内存大小,envp指针(环境指针)等。定义如下:
  
  /usr/include/machine/bootinfo.h
  struct bootinfo {
    u_int32_t  bi_version;
    u_int32_t  bi_kernelname;   /* 用一个字节表示 * */
    u_int32_t  bi_nfs_diskless;  /* struct nfs_diskless * */
      /* 以上为常备项 */
  #define bi_endcommon  bi_n_bios_used
    u_int32_t  bi_n_bios_used;
    u_int32_t  bi_bios_geom[N_BIOS_GEOM];
    u_int32_t  bi_size;
    u_int8_t  bi_memsizes_valid;
    u_int8_t  bi_bios_dev;    /* 引导设备的BIOS单元编号 */
    u_int8_t  bi_pad[2];
    u_int32_t  bi_basemem;
    u_int32_t  bi_extmem;
    u_int32_t  bi_symtab;   /* struct symtab * */
    u_int32_t  bi_esymtab;   /* struct symtab * */
      /* 以下项目仅高级bootloader提供 */
    u_int32_t  bi_kernend;   /* 内核空间末端 */
    u_int32_t  bi_envp;    /* 环境 */
    u_int32_t  bi_modulep;   /* 预装载的模块 */
  };
  boot2 进入一个循环等待用户输入,然后调用load()。假如用户不做任何输入,循环将在一段时间后结束,load() 将会装载缺省文件(/boot/loader)。函数 ino_t lookup(char *filename)和int xfsread(ino_t inode, void *buf, size_t nbyte) 用来将文件内容读入内存。/boot/loader是一个ELF格式二进制文件,不过它的头部被换成了a.out格式中的struct exec结构。load()扫描loader的ELF头部,装载/boot/loader至内存,然后跳转至入口执行之:
  
  sys/boot/i386/boot2/boot2.c:
    __exec((caddr_t)addr, RB_BOOTINFO | (opts & RBX_MASK),
      MAKEBOOTDEV(dev_maj[dsk.type], 0, dsk.slice, dsk.unit, dsk.part),
      0, 0, 0, VTOP(&bootinfo));

图片内容