期货套期保值决策模型的发展

来源:岁月联盟 作者:郑梅青 黄长征 时间:2010-06-27
  摘 要 期货套期保值模型的研究经历了传统全额套期保值、线性回归、线性均值-方差三个阶段。目前,最常用的决策模型是马柯维茨线性均值-方差模型,但该模型无法描述决策者效用的非线性特征,无法分析现货价格预期对套期保值决策的影响。基于此,有学者对非线性均值-方差模型做了初步探索。在对以往模型进行系统评述的基础上,建立了一个更为一般的非线性模型,以期能更准确地描述那些在较小风险时考虑投机,在较大风险时规避风险的决策行为。
  关键词 套期保值 期货 均值-方差 非线性模型

1 期货套期保值的含义
  期货是指以合约形式确定下来的,在未来某一特定日期进行交割(购买或出售)的某种实物商品或资产的交易。期货交易的有100多年了,从1990年开始就有了期货交易。期货市场的形成和与发展主要是为了使商品生产者和商品使用者能有个渠道来转移他们所承受的市场价格风险,同时也为投机商赚取风险利润创造必要的条件。目前,世界各主要期货交易品种的期货交易量不仅远远超过同期现货的交易量,其所形成的各个权威价格也已成为市场价格信号体系中的重要组成部分。期货市场已在套期保值、价格发现以及资源优化配置等方面与现货市场一道起着基础性的作用。
  套期保值是期货市场最主要的功能之一。套期保值是交易者将期货与现货交易结合起来,通过套期期货合约为现货市场上的商品经营进行保值的一种交易行为。这里所说的“套期”,主要是指生产经营者在现货市场上买进或卖出一定量的现货商品的同时,在期货市场上卖出或买进与现货品种相同、数量相当,但方向相反的期货合约,以期在现货市场发生不利的价格变动时,达到规避价格波动风险的目的。
2 套期保值模型的建立和发展轨迹
  期货套期保值决策的核心是决定建立与现货头寸相当的期货头寸的数量,以达到最优的保值效果。自20世纪30年代凯恩斯对套期保值的基础性研究开始,期货套期保值模型经历了传统全额套保模型、线性回归模型和线性均值-方差模型三个阶段。目前正在向非线性模型方向发展。
2.1 传统等额套期保值模型
  传统套期保值理论主要源于英国著名经济学家凯恩斯和希克斯。他们认为套期保值者为回避现货头寸的价格风险,需要在期货市场上持有等额相反头寸。以卖方套期保值为例(下同),假定套期保值者持有与(未来)现货多头头寸相等数量的期货空头头寸,如果持有期内现货价格下跌,则现货的跌价损失就可以在期货的盈利中得以弥补;反之,如果现货价格上涨,则现货的可能盈利也被期货的亏损所抵消,因此,套期保值的作用相当于锁定现货价格。
传统套期保值模型操作非常简单,也刻画了实际套期保值决策的某些特点,例如纯价格风险的回避、对加工者而言锁定生产成本等等。但是,该模型忽略了基差(即现货价与期货价之差)波动的可能性,从而使全额套期保值无法回避基差风险。
2.2 线性回归模型
  如果期货价格不能与现货价格同向等幅波动,则市场将存在基差风险。为将基差风险纳入到模型中,Giogion Canaralla等给出如下的方法:令St,Ft分别为第期现货价与期货价,其回归方程可以写为:
St-St-1=α+β(Ft-Ft-1)+εt,εt~N(0,σ2t)           (1)
其中,α,β为回归系数。设s,f分别为未来现货与期货价格的同期变化,则一个合理的套期保值比例(即单位现货需作的保值量)B*应使x=s-Bf的方差Var(x)为最小,即:
B*=arg minVar(x)     
=argminVar(s-Bf)
=argmin[Var(s)-2BCov(s,f)+B2Var(f)]
=■
=β(2)
  即最优套期保值比B*应等于(1)式的回归系数β。该模型有效地规避了基差风险,且简单直观,在实际中也易于操作。但是该模型最大的局限就是没有考虑到套期保值者对价格的预期,即假定预期对套期保值决策形成没有丝毫作用。这显然不符合一类有着大量经验的套期保值者的决策特征,无法描述一大类实际的套期保值行为。
2.3 线性均值-方差模型 
2.3.1 模型建立 
  为了引入保值者预测的作用,一些作者引入了套期保值者对收益和风险的权衡概念,从而提出如下加权模型,以卖方套期保值者为例,假设报酬函数为:
l=s-nf(3)
  其中,s为未来现货价格的变化,f为期货价格的变化,n为单位现货需要做的套期保值比例。则保值者期望效用函数EU(l)形式如下:
EU(l)=E(l)-λVar(l)(4)
  其中,E(l)为保值者期望的报酬,Var(l)为相应的报酬风险,λ为绝对风险厌恶系数(λφ0),显然,该期望效用函数反映了保值者希望报酬高和风险低的要求。
2.3.2 模型求解 
  为求得最优套期保值比n,对EU(l)求关于n的偏倒数,并令偏倒数为零得:
■=-E(f)-2λVar(f)n+2λCov(s,f)=0(5)
由(5)式得出:
n=■+■(6)
式(6)中,n可分解为两项,其中,nh=■为保值分量,即回归模型中的回归系数β;ns=■为投机分量,与保值者的期货价格预测密切相关。保值者会根据E(f)的正负来决定在保值分量nk的基础上增加或者减少一个ns分量。 
2.3.3 模型的局限性
  (1)虽然该模型解决了以往模型无法考虑保值者预测的问题,但在模型中,等量的期望报酬带来等量的期望效用增量,这一点与实际不符合。因为一般情况下,报酬增加,相应的风险亦增加,从而带来的效用增量应当是随报酬增量边际递减的。
  (2)保值分量与保值者对现货价格的预测E(s)无关,这一点也与实际情况不符,因为有很多保值者对现货行情非常熟悉,例如有多年工作经验的农场主、生产商、加工商等。他们在决策时会更多地利用他们对现货市场的预测来决定套期保值比例。
4.4 非线性均值-方差模型
  针对线性均值-方差模型的局限性,有学者对均值-方差模型做了某种非线性的推广,从而迈出非线性建模的第一步,模型为:
EU(l)=■(7)
  其中,λ为风险厌恶系数。
  由■=-■π0得出,随着风险V的增大,等量的E增量带来递减的效用增量;或者等价地,随着风险V的增大,等量的效用增量需要递增的E增量(见图1、图2)。显然,这一特点切中了套期保值的核心——保值需求是第一位的,其他的需求(如投机)则是第二位的。
该非线性模型充分考虑了保值者对现货价格的预期,模型结果比线性模型更符合实际情况。但是该模型无法描述市场上的有着投机需求的保值者的决策特征。3 非线性均值-方差模型的进一步
  在套期保值决策中,有一类对较大风险厌恶的决策者。他们的决策特点是:在风险较小的时候,有投机的欲望;而在风险较大的情形下,则只专注于套期保值。由于这种决策效用的特殊性,本文试图建立一个更为一般的非线性均值-方差模型对此进行研究。以一个多年生产谷物的农场主为例,模型建立如下:
EU(l)=■(8)
3.1 模型的特点
  第一,在模型中,要使农场主的期望效用EU(l)达到最大,应使预测回报率E(l)尽可能大,而相应的风险Var(l)尽可能小。符合实际情况。第二,当农场主完全不厌恶风险,即风险厌恶为零时(此时农场主是期货市场的投机者),有EU(l)=E(l),与线性模型一致。第三,由■=-(■)=■π0得,等量的预期回报率E(l)增加带来递减的效用EU(l)增量(见图4)对该农场主来说,随着风险的增大,在风险小的时候,效用增量的幅度变化不大;但是在风险较大时,要达到同等的效用,需要的期望报酬增量在显著增大;在风险很大的时候,微小的风险增量需要很大的期望报酬增量才能达到同等的效用。可见,该农场主在风险很小时,有投机的欲望;而在风险较大时,则极其规避风险。相对于非线性模型(7)的等效用线来说(见图3),该模型更能刻画他对较大风险的规避特征。

3.2 模型的求解
沿袭前述线性模型的求解方法,令EU(l)对n偏倒数为0,得:
■=
■=■=0(9)
则有:
2λσ2fE(f)n2-[2λσ2fE(S)+2λσsfE(f)]n+2λσsfE(S)-E(f)=0(10)
在(10)式中,若E(f)=0,且风险厌恶系数λ≠0,则最优套期保值比为n=σsfσ2f,跟线性模型E(f)=0的情况一致,此乃农场主在完全不投机下的最优保值策略。若E(f)=0且λ=0,此时农场主的期望效用只与现货价格的预期变化E(s)有关,而与套保比例n无关。若E(f)≠0且λ=0,则(10)式无解,这与上述非线性模型(7)的情况一致,这是一种极度投机的情况。若λ≠0且E(f)≠0(实际情况大多如此,农场主厌恶风险且预测期货市场上谷物价格会有波动),则(10)式化简为:
n2-(■+■)n+■-■=0(11)
由判别式
  △=(■+■)2+■+■
   =(■+■)2+■?准0(12)
得此时有两个实数解
  n1,2=■(13)
  该结果即是该农场主在大多情况下采用的最优套保比值。同时可以看出,最优套保比值跟农场主对期货价格预测E(f),现货价格预测E(s)均有关系,在此,该农场主可以把自己对现货市场的知识运用到决策中去。下面对两个解的两种极端情况进行讨论:
  (1)当期货与现货市场上谷物的价格完美关联(即s=f,E(s)=E(f),σsf=σ2f=σ2s),且农场主极度厌恶风险(λ→∞)时,△=0,此时(11)式化简为n2-2n+1=0;
得出农场主的最优套保比
n=1(14)
  此时该模型就退化为传统(等额)套期保值模型。
  (2)当期货与现货市场上谷物的价格完美关联,农场主保值者的风险厌恶度适中(λ即不为0也不为∞)时,(11)式化简为:
n2+2n+1-12λσ2f=0,(15)
n1,2=1±1■(16)
将(16)式代回(8)式得
EU(l)=μ■(17)
  (3)当预测现货市场谷物的价格上升(E(s)φ0)时,说明现货头寸有利,农场主此时会相应减少一个保值分量1■σS,即取套期保值比为n=1-1■σS;
此时通过套期保值得到的最大期望效用  
EU(l)=■(18)
(4)当预测现货市场谷物的价格下跌(E(s)π0)时,说明期货头寸有利,农场主会在等额保值的基础上增加一个分量1■σS,即取套期保值比为n=1+
1■σS;
此时,通过套期保值得到的最大期望效用  
EU(l)=■(19)
  该结果符合实际,因为大多情况下,期货价格在一个严格规范的期货市场上有时会高于现货价格有时则低于现货价格(即期货溢价和期货市场倒挂的情况都可能出现),农场主不会相信期货市场不会出现倾斜。农场主也是理性行为者,他在进行保值操作时将基于价格预期决定持仓量,除了套期保值外,如果有投机的机会,他也会投机。于是他的净期货交易就反映出他在保险欲望和投机收益之间的权衡。
4 结语
  在回顾套期保值决策模型的基础上,对非线性均值-方差模型作了进一步的推广,以一个多年从事谷物生产的农场主为例来说明怎样实施该套期保值过程。它比已有的非线性线性模型能更准确地刻画对较大风险厌恶的这样一类决策者的决策特征(文中的农场主只是一个特例),在风险小会充分考虑投机,以期获得额外的收益;在风险大时则只专注于套期保值。但是,跟前述所有的模型一样,在实际决策过程中,人的主观看法、信息获取的情况、情感等非理性因素往往对决策结果有很大影响,这里该模型没有涉及。

1 周洛华.中级工程学[M].上海:上海财经大学出版社,2005
2 朱国华,褚玦海.期货市场学[M].上海:上海财经大学出版社,2005
3 黄长征.期货套期保值决策模型研究[J].数量技术经济研究,2004(7)
4 董雪梅. 金融衍生工具避险功能探析[J]. 哈尔滨金融高等专校学报,2006(20)