trkA和Aβ1-40与阿尔茨海默病大鼠发病机制的关系

来源:岁月联盟 作者:毕红颖,邹春杰 时间:2010-07-12

【摘要】  目的 采用穹隆-海马伞切断及双侧卵巢切除的方法制作阿尔茨海默病(Alzheimer,disease AD)模型,观察AD模型大鼠脑内皮层区、海马CA1区、杏仁复合体区和Meynert核区酪氨酸激酶原癌基因(tyrosine kinase proto-onco-geneA,TrkA)和β淀粉样肽1-40(Amyliod β1-40)的表达与对照组比较有何变化,以探讨二者的变化与AD发病机制的关系。方法 取健康雌性Wistar大鼠20只,随机分成四组,对照组,穹隆海马伞切断加卵巢切除组(双切加去势组),卵巢切除组(去势组),穹隆海马伞切断组(双切组)每组各5只。在脑立体定位仪上,切断大鼠脑的双侧穹隆海马伞同时切除双侧卵巢,建立模拟AD的动物模型。应用免疫组织细胞化学技术对trkA和Aβ1-40免疫阳性细胞染色。观察AD模型组大鼠脑皮层区、海马CA1区、杏仁复合体区和基底前脑Meynert核区等部位trkA和Aβ1-40阳性细胞的表达与对照组比较是否不同。结果 对照组大鼠脑内的各观察区内Aβ1-40只有少量表达,trkA表达无明显改变;AD模型组大鼠脑内的皮层区、海马CA1区、杏仁复合体区和基底前脑Meynert核区Aβ1-40表达显著增多(P<0.05),各模型组zhijian 相互比较,Aβ1-40的表达无明显差异(P>0.05);AD模型组大鼠脑内的皮层区、海马CA1区、杏仁复合体区和基底前脑Meynert核区trkA的阳性细胞显著减少(P<0.05),各模型组之间相互比较,穹隆海马伞切断加卵巢切除组较穹隆海马伞切断组和卵巢切除组trkA减少显著(P<0.05),穹隆海马伞切断组与卵巢切除组之间trkA表达差异无显著性(P>0.05)。结论 AD模型组大鼠脑内皮层区、海马CA1区、杏仁复合体区和基底前脑Meynert核区内Aβ1-40的阳性细胞显著增加,而trkA的阳性细胞显著减少,提示Aβ1-40的表达增多和trkA的表达减少可能与老年性痴呆发病机制相关,可能是临床AD发病的病理基础。

【关键词】  穹隆-海马伞切断;卵巢切除;酪氨酸原癌基因;β淀粉样肽1-40;大鼠;阿尔茨海默病

    【Abstract】  Objective  To observe the expression of trkA and Aβ1-40 in the different areas of the brain when the ovaries of rats were ablated and those bilateral fimbria/fornix were transected in order to make AD model and discuss the relationship of trkA and Aβ1-40 with the pathogenesis of AD. Methods  Totally 20 health female rats were randomly and equally divided into control group, fimbria/fornix transection and ovariectomized group, ovariectomized group and fimbria/fornix transaction group. The bilateral fimbria-fornix of brain was transected in the fimbria/fornix transaction group. The bilateral ovaries of rats were ablated in the ovariectomized group. In the fimbria/fornix transection and ovariectomized group, bilateral fimbria-fornix of brain were transected and meanwhile bilateral ovaries of rats were ablated to make simulational model of AD. Immunoreactive cell of trkA and Aβ1-40were stained by immunohistochemical way. The expressive varieties of immunoreactive cell of trkA and Aβ1-40 in the cerebral cortex, hippocampus CA1, Meynert nucleus and almond complex were observed. The number of masculine cell were noted in high times microscope randomly selected 5 fields in every detected area, and then the average number of trkA and Aβ1-40 in one field in normal group with that in model groups was compared respectively in model groups. Firstly the numbers were arranged by statistic way. Results  The expression of Aβ1-40 was few only and the expression of TrkA did not apparently change in the control group. The expression of Aβ1-40 remarkably increased in the cortex, hippocampus CA1, Meynert nucleus and almond complex of the brain in the AD model groups as compared to that in the normal group (P<0.01). However, the expression of Aβ1-40 was not different apparently in detected areas in the model groups (P>0.05). As compared to the normal group, the expression of trkA distinctively decreased in the cortex, hippocampus CA1, Meynert nucleus and almond complex of the brain in the AD model groups (P<0.01). In fimbria/fornix transaction and ovariectomized group, the numbers of trkA masculine cell were lesser than those in fimbria/fornix transection and ovariectomized group and ovariectomized group (P<0.01). The expression of trkA were not remarkably different in fimbria/fornix transaction of group and ovariectomized group (P>0.05). Conclusion  The expression of Aβ1-40 apparently increases and the expression of trkA obviously decreases in AD model groups as compared to those in the normal control group. The pathological changes may lead to relative-aged dementia and can be as a pathological base of clinical AD.

    【Key words】  fimbria/fornix transaction; ovariectomization; trkA; Aβ1-40; rats; Alzheimer disease

    阿尔茨海默病(AD)是基底前脑胆碱能神经元的变性死亡及相应皮质和海马神经元退化所引起的老年神经元退行性疾病,主要临床表现为学习和记忆功能减退,严重的智力低下[1]。AD是一种以认知记忆障碍为主要特征的进行性神经系统疾病,又称老年性痴呆,是老年人中最常见的神经退行性疾病之一。AD的特征性病理改变有神经细胞外出现β淀粉样肽(Amyliod β1-40)聚集形成的老年斑,皮层海马内胆碱能与胆碱能受体神经元丢失和神经生长因子(NGF)及其受体酪氨酸激酶原癌基因(tyrosine kinase proto-onco-geneA,TrkA)表达减少等[2]。因此,本试验利用穹隆-海马伞切断和双侧卵巢切除模拟AD模型,观察AD模型大鼠脑内的病理生理改变。皆在探讨AD时大脑皮层区,海马CA1区、杏仁复合体区和基底前脑Meynert核区等部位trkA和Aβ1-40表达的改变与AD发病机制的关系,从而为临床AD的防治措施和药物的研究与开发提供理论基础。本文对AD模型大鼠脑内不同部位trkA和Aβ1-40的变化进行了观察。现报告如下。

    1  材料与方法

    1.1  动物与分组  取健康雌性Wistar 5月龄大鼠,体重210~250g,由青岛市药物试验研究中心提供。常规饲养,自由饮水、取食,饲养的环境温度22℃左右。随机分成4组:(1)对照组;(2)穹隆-海马伞切断组;(3)双侧卵巢切除组;(4)穹隆-海马伞切断加双侧卵巢切除组;每组5只。

    1.2  动物疾病模型制作

    1.2.1  穹隆-海马伞切断  经10%水合氯醛(35~40mg/kg,ip)麻醉后,将大鼠俯卧固定于江湾IC型脑立体定位仪,按常规消毒、剪毛、正中切开头皮,暴露出露骨,参照Paxions和Watson的大鼠脑立体定位图谱[3]。在前囟后2.2~2.5mm,中线旁1mm处,用电动开颅器凿开颅骨,切开硬脑膜,用自制双刃刀先置于上述部位的脑表面,然后将刀4.5mm,外移1mm,再降刀1mm,外移1.5mm,最后上下抽动刀约20次,以保证海马伞外侧缘完全切断。清洁颅面,缝合头皮,常规饲养。

    1.2.2  卵巢切除术(VOX)  经10%水合氯醛(35~40mg/kg,ip)麻醉后,先使动物右侧卧位,在腰背部脊柱旁和最末肋骨下约1cm剪开皮肤,切口约2~3cm,沿脊柱旁切开肌肉,打开腹腔,将肾脏下方的脂肪拉出后可见有一红色颗粒腺体,此即是埋在脂肪内的卵巢,结扎并切除卵巢,观察切口处无出血后关闭腹腔;再使动物向左侧侧卧位,以同样的方法取出右侧卵巢[4]。假手术对照组动物除了不切断穹隆-海马伞和不去除卵巢外,其余处理同上。动物术后饲养1个月处死。

    1.3  脑组织病例观察  将模型大鼠以10%的水合氯醛腹腔进行麻醉后,开胸,进行心脏灌洗,即以生理盐水250ml,快速冲洗2min。冲净血液后,以4%的多聚甲醛灌注固定5~10min后,断头取脑。先锯开颅盖骨,剪开硬脑膜,取下的组织块放入4%的多聚甲醛后固定1.5~2h,常规脱水,二甲苯透明,然后进行石蜡包埋,连续冠状切片,用于免疫组化观察。

    1.4  免疫组化对照试验  切片经0.01mol/L PBS溶液漂洗3次,每次10min;浸入trKA兔抗蛋白和Aβ蛋白(1:200,博士德公司)孵育,4℃过夜,或37℃孵育1h,0.01mol/L PBS溶液漂洗3次,每次10min,入生物素化兔二抗(博士德公司)孵育2h,0.01mol/L PBS溶液漂洗3次,每次10min,入ABC复合物(博士德公司)孵育2h,0.01mol/L PBS溶液漂洗3次,每次10min,蒸馏水快洗3次。用硫酸镍铵加强的DAB法核对色,镜下控制时间,蒸馏水终止反应,干燥、脱水、透明、封片,光镜观察。阴性对照用0.01mol/L PBS替代一抗,其余步骤相同。

    1.5  定量分析记数和统计学处理  Paxinos和Watson编写的大鼠脑图谱[5],Olympus光学显微镜下(10×40倍)观察海马CA1区、皮质区、杏仁复合体区、基地前脑 Meynet核等部位Aβ1-40和trKA阳性细胞的数量,用x±s表示,统计学处理采用t检验。

    2  结果

    2.1  Aβ1-40在各观察组表达分析  假手术组大脑各观察区有少量的Aβ1-40表达,与假手术组比较,模型组大鼠海马CA1区,皮质区,杏仁复合体区Aβ1-40阳性细胞的数目均显著增多(P<0.01)。见表1、表2。表1  Aβ1-40在各观察组表达分析 表2  各模型组与对照组均数比较方差分析结果

    2.2  将去势加双切组、双切组和去势组进行两两比较  结果发现去势加双切组trkA表达的减少比单独去势组和双切组显著,差别有统计学意义(P<0.01)见表3、表4,因此穹隆-海马伞切断,胆碱能神经投射中断,加双侧卵巢切除后,大鼠体内雌激素水平下降对trkA表达损伤较单独穹隆-海马伞和卵巢切除更严重。表3  TrKA在各观察部位的表达表4  各模型组与对照组均数比较方差分析结果

    3  讨论

    3.1  胆碱能神经损伤后trkA和Aβ1-40表达的改变

    3.1.1  胆碱能神经损伤后Aβ1-40沉积的机制  AD病人脑内特异性病理改变之一为脑中Aβ1-40的沉积,实验发现,基底前脑胆碱能神经元活性的降低可增加大鼠皮层的Aβ1-40表达和分泌。AD病人的皮层胆碱能神经元活性降低,可以促进产生非淀粉样片段的APP加工途径,导致Aβ1-40表达明显增加[6]。

    胆碱能神经元损伤后胆碱能神经元活性下降,可能通过NGF途径使Aβ1-40的表达增加,正常情况下,P75和trkA共同存在于胆碱能系统内,通过与NGF作用而发挥神经营养作用,当胆碱能神经元活性下降,或发生蜕变和坏死,造成神经元的丢失,通过两条途径造成Aβ1-40的沉积,其一可能是由于胆碱能神经元丢失,存在于胆碱能神经系统的trkA减少,胆碱能神经元对NGF的敏感性下降,毒性Aβ1-40沉积[7],另一条途径可能是由于胆碱能神经元活性下降,trkA表达减少,而P75的表达相对增多,NGF与P75结合,促进APP的生成,Aβ1-40的沉积增多。本文研究结果显示,在穹隆-海马伞切断大鼠脑内海马CA1区、皮质区、杏仁复合体区Aβ1-40阳性细胞的数目显著增多,说明胆碱能神经的失活,不仅导致乙酰胆碱的减少,同时引起Aβ1-40阳性物质大量沉积。

    3.1.2  胆碱能神经损伤后trkA表达减少的机制  AD的主要病理特征之一就是基底前脑和腹侧纹状体胆碱能神经元丢失,胆碱能神经元存在与神经生长因子(NGF)受体(trkA)共同作用的位点[8]。实验结果证明,99%的胆碱能神经元表达trkA,trkA广泛存在于中枢神经系统内,因此胆碱能神经元损伤后,胆碱能神经元减少,trkA的表达减少,NGF的作用位点减少,胆碱能神经元退化对NGF的敏感性下降。目前研究的目的是AD时trkA表达的水平[9]。AD病人脑内基底前脑(NBM)和腹侧纹状体内trkA表达水平下降,同时发现在NBM和腹侧纹状体内胆碱能神经元也发生退化。AD时胆碱能神经元功能退化可能是由于缺乏NGF的营养支持作用。因为在基底前脑和腹侧纹状体NGF与trkA结合,促进胆碱能神经元的存活。AD时,NGF蛋白和NGFmRNA水平并没有减少,因此,NGF是通过trkA发挥营养支持作用,所以NGF的神经营养作用的下降,可能是由于trkA减少引起的。最近研究发现,AD病人脑内的NBM内trkA免疫反应神经元减少,胆碱能神经元丢失,因此,在NBM内trkA主要在胆碱能神经元内表达,结果显示AD时trkA在胆碱能神经元内表达减少。

    3.2  雌激素对trkA和Aβ1-40表达的影响。

    3.2.1  雌激素对Aβ1-40表达的影响   Aβ1-40在脑组织及血管周围异常沉积形成老年斑是AD的一个重要病理特征。女性绝经前Aβ1-40水平低于同龄男性,绝经后雌激素水平下降Aβ1-40明显增高[10]。给予雌激素替代后,Aβ1-40显著降低。雌激素通过影响APP的分泌代谢机制而促进了可溶性淀粉样蛋白的生成。进一步研究表明,雌激素通过神经生长因子介导激活蛋白激酶C(PKC),PKC又增强α分泌酶的活性,因而激活了可溶性淀粉样蛋白的生成途径。Aβ1-40在脑内沉积可导致神经元细胞死亡。雌激素不但可以防止Aβ1-40沉积,而且还阻断Aβ1-40沉积后对神经元的毒性作用。本实验采用双侧卵巢切除方法,造成大鼠脑内雌激素缺乏,结果观察到大鼠脑内层区、海马CA1区、杏仁复合体区和基底前脑Meynert核等Aβ1-40沉积显著增多,结果证明,雌激素可能通过不同途径影响Aβ1-40的表达[11]。

    3.2.2  雌激素对trkA表达的影响  雌激素循环过程中的变化将会影响大鼠脑内基底前脑的胆碱能神经元。这些神经元主要投射区域在皮层和海马,在学习和记忆过程中起非常重要作用。胆碱能神经元的丢失可能引起与衰老和AD有关的认知功能障碍。长期卵巢功能丧失,大鼠脑内的基底前脑的胆碱能神经元的含量下降,这与正常的衰老有关。绝经期后妇女的循环雌激素水平长期丢失可能引起与衰老有关的基底前脑胆碱能神经元功能的减退[12]。在成熟的大鼠,给予雌激素替代能提高基底前脑的胆碱能神经元功能。雌激素能降低患者AD性痴呆的危险性和严重性,其中的一个主要的机制是提高了MS和NBM胆碱能神经元的投射功能。

    因此在本实验中,卵巢切除大鼠体内观察到trkAmRNA表达明显减少,进一步证实了可能是由于长期的雌激素缺乏,降低了胆碱能神经元外源性NGF的反应性,引起基底前脑的胆碱能神经元功能下降和存活减少[13]。   综上所述,实验结果显示,AD模型组大鼠脑内层区、海马CA1区、杏仁复合体区和基底前脑Meynert核区Aβ1-40的表达增多,而trkA表达减少。这可能与穹隆—海马伞切断胆碱能神经元损伤和卵巢切除雌激素水平下降有关。   当大鼠体内雌激素水平下降以后,trkA表达减少,而Aβ1-40的表达增多,推测雌激素可能一方面通过对胆碱能神经元的作用而影响trkA的表达,另一方面可能直接影响APP的代谢而造成Aβ1-40的产生增多。

【】
  1 Scott A,Lyness SA,zarow C,et al.Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease;a meta-analysis.Neurobiology Aging,2003,24:1.

2 Bieber EJ,Cohen DP.Estrogen and hormone replacement therapy; is there a role in th preservation of cognitive function.Int J Fertile Womens Med,2001,46(4):206.

3 Singh M,Meyer EM,Millard WJ,et al.Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female SD rats.Brain Res,1994,644:305.

4 Ute K,Bigl V,Eschrich K,et al. De-afferentation of the septo-hippocampal pathway in rats as a model of the metabolic events in Alzheimer,s disease.Int J Devl Neuroscience,2001,19:263.

5 Paxinos G,Watson C.The rat brain in sterrotaxic coordinated.2nd.Australia:Academic Press Australia,1988.23-38.

6 He YS,Yao ZB.NGF promotes collateral sprouting fiber in the septo-hippocapal transaction.Brain Res,1990,586:27.

7 Morgan C,Bugueno MP,Garrido J,et al.Laminin affects polymerization,depolymerization and neurotoxicity of A ? peptide.Peptides,2002,23:1229.

8 Dumery L,Bourdel F,Soussan y,et al.β-amyloid protein aggregation: its implication in the physiopathology of Alzheimer,s disease.Pathol Boil,2001,49:72.

9 Casaccia-Bonnefil P,Carter BD,Dobrowsky RT,et al.Death of oligodendrocyted by the interaction of nerve growth factor with its receptor.Nature,1996,383:716.

10 Oliveri G,Novakovic M,Savaskan E,et al.The effects of β-estradiol on SHSY5Y neuroblastoms cell during heave induced oxidative stress neurotoxicity and β-amyloid secretion.Neurosceience,2002,113(4):849.

11 Wise PM,Dubal DB,Wilson ME,et al.Estradiol is a protective factor in the adual and aging brain:understanding of mechanisms derived from in vitro studies.Brain Research Reviews,2001,37:313.

12 gibbs rb.levels of trka and bdnf mRNA,but not NGF mRNA,fluctuate across the estrous cycle and increase in response to acute hormone replacement.Brain Res,1998,787:259.

13 Dong HW,Petrovich GD,Swanson LW.Topography of projection from amygdala to bed nuclei of the stria terminalis.Brain Res Rev,2001,38:192.