脊髓损伤后轴突再生修复的研究进展
【关键词】 脊髓损伤
脊髓损伤(spinal cord injury,SCI)在临床上常见,但在临床上仍无确切办法。随着及建筑事业的迅速,脊髓损伤已成为骨科领域中常见的疾患。目前的研究发现脊髓损伤后是可以再生的,但这种再生能力有限,在正常情况下受到中枢神经系统(central nervous system,CNS)内在环境的抑制。本文针对损伤轴突再生(regeneration)情况,激发脊髓的再生能力,克服中枢神经系统内在环境的抑制作用,阐述实现脊髓损伤后修复的关键。
1 细胞移植
雪旺细胞(Schwann cells,SCs)是周围神经系统(peripheral nervous system,PNS)的重要组成部分,移植雪旺细胞可限制损伤诱导的组织损失,促进轴突再生和髓鞘化[1]。Azanchi[2]等证实其可分泌成纤维细胞生长因子(fibroblast growth factor,FGF),Takeda[3]等发现其可合成神经细胞粘附分子L1(nerve cellular adhesion molecule L1)、神经生长因子(nerve growth factor,NGF)、脑源性神经生长因子(brainderived neurotrophic factor,BDNF)、睫状神经营养因子(ciliary neurotrophic factor,CNTF)等。将已分化的雪旺细胞悬液植入脊髓缺损区域,发现神经细丝和酪氨酸羟化酶免疫反应性神经纤维有显著增生反应,可促进全横断损伤轴突再生和功能恢复[4]。冯世庆[5]等将NGF和BDNF修饰的SCs和胚胎脊髓细胞悬液(fetal spinal cord cell suspension,FSCS)联合植入脊髓损伤部位,发现联合移植引起损伤部位内外区域皮质脊髓束轴突生长,引导宿主纤维和移植物的整合与联系,促进脊髓损伤的修复。
神经干细胞(nerve stem cells,NSCs)在其周围环境发生改变时,它的增殖能力将被激活。表皮细胞生长因子(EGF)、碱性成纤维细胞生长因子(bFGF)、白细胞介素(LIF)等对神经干细胞的增殖具有支持作用。Johansson[6]等将神经干细胞移植至损伤创面,神经干细胞有向神经元转化的趋势。Gray[7]认为NSCs是用于脊髓中枢损伤理想替代移植物。放射状胶质细胞(radial glial cells,RGCs)是在胚胎发育中枢神经系统发现的神经干细胞。Hasegawa[8]等从鼠神经球分离出克隆RGCs,其可使轴突生长抑制因子积聚减少,神经丝数量增多,与损伤部位形成细胞内桥接结构,抑制继发损害发生,具有神经保护作用。
胚胎干细胞(embryonic stem cell,ESCs)可与宿主神经组织建立功能性突触联系,在中枢神经系统内形成轴突的髓鞘。Ogawa[9]等将原代培养的ESCs体外诱导分化,移植到脊髓损伤处,可在受损脊髓部位形成突触样结构,在一定程度上分化为少突胶质细胞,有助于形成轴突髓鞘,促进脊髓功能改善,可减少空洞面积。
嗅神经鞘细胞(OECs)具有终身分裂、再生特点,在自身膜上可表达出与细胞粘附和轴突生长相关的分子[10]。嗅觉神经胶质细胞可使轴突生长进入损伤微环境,再生纤维数量增多,形成有效突触连接及髓鞘包裹,促进脊髓损伤神经元的存活[11]。
脊髓损伤可产生大量碎片残骸及炎性细胞,将骨髓基质细胞(bone marrow stromal cells,BMSCs)移植入脊髓损伤空洞中,可保护脊髓白质组织,轴突可在移植物中生长[12]。长入移植物的多数轴突生长轴线与脊髓长轴平行[13]。用111Inoxine标记的BMSc注射入脊髓空洞损伤区域,gamma线图发现其具有持久生长活性,未迁移至损伤外部位,说明损伤部位直接注射较静脉内途径更具有实用可靠性[14]。
基因修饰的纤维原细胞(genetically engineered fibroblast cells,GEFCs)可向脊髓损伤部位分泌BDNF及NT3等神经营养因子,为宿主轴突生长提供较好微环境,显著减少受损神经束的退变变性,引导下行脊髓束生长,顺行失踪示受损前庭脊髓束可生长进入上述移植物中[15]。
李洪钧[16]等将5溴脱氧尿核苷标记脐血CD34+干细胞(umbilical cord blood cells,UCBCs)移植入脊髓半横切部位,发现7%表达神经胶质纤维酸性蛋白(GFAP),2%表达神经元核抗原。Zhaot[17]等在脊髓半横切部位植入UCBCs,改良Tarlov评分分析示功能恢复和存活率有显著提高。提示上述细胞可做为脊髓损伤自体同源或异体同源移植的新细胞源。
2 损伤部位的桥接
Richardson[18]等将坐骨神经移植至胸髓损伤节段,发现有轴突再生。Cheng[19]等将大鼠肋间神经移植至胸髓横切部位,1年后在移植部位发现许多再生轴突。此移植物提供轴突生长所需通道,使轴突生长入宿主灰质,避免髓鞘相关分子抑制作用,减少脊髓继发损伤。
脊髓损伤后,再建损伤轴突与其支配靶器官联系是脊髓损伤修复的主要目标[20]。Campos[21]等将T13神经从其支配肌肉附着处分离,将其桥接于腰横切部位,4周后电刺激T13神经,出现背、腿部肌肉收缩,提示轴突与腰骶椎运动环路形成突触连接,与脊髓损伤部位建立旁路联系。
3 中和轴突生长抑制分子
硫酸软骨素蛋白多糖(chondroitin sulfate proteoglycans,CSPGs)由Rho/ROCK通路介导抑制轴突生长[22]。Moon[23]等用软骨素酶ABC降解CSPGs,可减弱胶质瘢痕中CSPGs对轴突再生的抑制作用。
髓磷脂相关性糖蛋白(MAG)可阻止神经元轴突发芽,避免神经纤维过度增生,在神经损伤时亦阻止损伤神经元再生,神经元经唾液酸处理后,MAG抑制作用被减弱,推测系由胞外氨基酸序列突变所致[24]。
髓鞘内的Nogo蛋白及其受体对轴突的再生起主要抑制作用[25]。网状内皮素(reticulon,RTN)是保守序列蛋白家族的统称,RTN4可抑制严重损伤轴索再生。此作用通过Nogo-A的氮末端和网状内皮素的保守序列区域协同发挥作用[26]。Fournier[27]认为损伤轴突周围形成包括NogoA在内不利于脊髓再生的抑制性微环境,使再生轴突不能通过移植物脊髓界面。
在横断脊髓损伤处有胶原结缔组织形成,可使NG2蛋白聚糖表达水平升高,使轴突生长进入损伤瘢痕中的能力增强,表明NG2蛋白聚糖对上述神经纤维有刺激作用,这与NG2蛋白聚糖是神经再生抑制剂的传统认识相反[28]。
4 基因治疗
Miura等[29]发现腺病毒介导的MEK1基因转导是新型治疗脊髓损伤的方法。复制缺陷腺病毒载体,经变异的CAMEK病毒转染,可激活细胞外信号介导激酶(extracellular signal regulated kinases,ERKS),刺激神经突再生,细菌凝集素共轭过氧化物酶顺行失踪证实此病毒可诱导轴突再生。脊髓诱发电位显示再生轴突有电生理传导性。
Martin[30]等发现基因激活基质(gene activated matrices,GAM)植入损伤中枢神经处,将外源DNA转入神经节细胞基因组中,由质粒编码生成碱性纤维原细胞生长因子(FGF2)、脑源性神经营养因子(BNDF)、神经营养素(NT3),可持续促进神经再生。
脊髓损伤后24h P2X(4)R阳性细胞在损伤部位有显著积累。双重免疫法示为活化小胶质或巨噬细胞。P2X(4)R和/或beta-APP阳性的神经突越接近损伤部位,生长程度及数量则显著增加。P2X(4)R(+)细胞可调整细胞内信号传递链表达,诸如:COX1、COX2、RhoA、RhoB等[31]。
脊髓损伤后功能损害与神经元细胞坏死及有形成髓磷脂作用的少突细胞凋亡有关。在转P35基因(即:半胱氨酸天冬氨酸蛋白酶抑制剂)的胸髓损伤老鼠中,运用反凋亡P35蛋白,导致大量少突细胞生成和脱髓鞘变化减少,减轻脊髓功能损害程度[32]。
5 胶质瘢痕
脊髓损伤后,一些抑制因子如胶原纤维、硫酸软骨素、角蛋白等在脊髓损伤部位将重新获得表达,可导致和促进瘢痕形成。Roitbak[33]等发现:脊髓损伤部位胶质细胞的过度增生使得硫酸软骨素的表达增加,对轴突生长具有阻挡作用。Stichel[34]等在脊髓损伤部位给予硫酸软骨素酶可抑制胶原纤维形成,发现轴突生长迁移明显增加,降低胶质瘢痕的阻挡膜作用。分泌型Semaphorins的某些受体可抑制瘢痕内滋养血管形成[35]。
脊髓损伤后形成的胶质瘢痕抑制轴索生长,髓鞘形成及神经元替代[36]。胶质瘢痕是由阻碍轴突再生的神经元胶质化和细胞外基质沉积构成[37]。在脊髓损伤部位有表达前纤维变性结缔组织增长因子的细胞积聚,波形蛋白、胶质纤维酸性蛋白与胶质瘢痕形成有关。
在缺乏细胞凋亡前体蛋白(Bax)情况下,将少突细胞暴露于可刺激其凋亡的十字孢碱(staurosporine)或环孢菌素A(cyclosporin A)等药物,其凋亡坏死程度明显加重。Dong[38]等认为,脊髓损伤后轴突沃勒变性破坏轴突再生支持因素,触发Bax表达,抑制胶质瘢痕中少突细胞的凋亡坏死,使其抑制轴突再生作用增强。
黄其林[39]等构建反义胶原纤维酸性蛋白(GFAP)逆转录病毒载体,引入中枢神经损伤灶内,发现其能有效抑制星形胶质细胞的生长及对损伤的反应,抑制体内胶质瘢痕增生。
6 免疫反应
早期免疫反应以有害作用为主,自身免疫作用可具有神经保护作用,过多的免疫抑制不利于SCI恢复[40]。TNF是免疫炎性反应的重要启动信号。Lavine等采用TNF抗体中和TNF可以显著增加损伤脊髓局部血流再灌注,促进脊髓功能恢复[41]。Kim[42]等证实TNF调节细胞内Ca+浓度,减轻金属离子神经毒性作用,减少氧自由基产生。定量逆转录聚合酶链反应表明P55受体和P75受体mRNA表达提高时,TNFalpha通过细胞转运出入血脊髓屏障能力相应增强,使免疫反应程度加重[43]。
层粘连蛋白alpha5的alpha链对嗜中性粒细胞和巨噬细胞有趋化作用,诱导产生金属蛋白酶9,可加重免疫反应副作用[44]。
Byrnes[45]等用激光作用于脊髓损伤区域,抑制免疫细胞过度反应,可显著增加轴突再生数量和距离。
7展望
综上所述,脊髓损伤后轴突具有一定的再生能力,其再生能力的大小除了与损伤的性质有关外,周围环境亦起重要的作用。脊髓轴突再生的研究,多数仍停留在动物实验阶段。将这些研究成果应用到临床之前,尚有很多工作要做,这包括:(1)所有研究结果均需要其它实验室能够复制出并有功能恢复良好的报告;(2)了解获得最大程度的轴突生长的条件;(3)在应用于人体之前,应该有较啮齿类更高级的动物实验以明确其应用的安全性。
:
[1]Oudega M,Moon LD, de Almeida leme R J, et al.Schwann cells for spinal cord repair[J].Braz J Med Biol Res, 2005,38(6):825-835.
[2]Azanchi R,Bernal C, Gupta R,et al.Combined demyelination plus Schwann cell transplantation therapy increases spread of cells and axonal regeneration following contusion injury[J].J Neurotrauma, 2004,21:775-778.
[3]Takeda Y,Asou H, Murakami Y, et al. A nonneuronal isoform of cell adhesion molecule L1:tissuespecific expression and functional analysis[J].J Neurochem,1996,66:2338-2349.
[4]Kamada T,Koda M, Dezawa M, et al.Transplantation of bone marrow stromal cellderived Schwann cells promotes axonal regeneration and functional recovery after complete transection of adult rat spinal cord[J].J Neuropathol Exp Neurol,2005,64(1):37-45.
[5]Feng shiqing,Kong xiaohong, Guo shifu,et al.Treat of spinal cord injury with cograft of genetically modified schwann cells and fetal spinal cord cell suspension in the rat[J].Neurotoxicity Research,2005,7(1,2):169-177.
[6]Johansson CB,Momma S,Clarke DL,et al.Identification of a neural stem cell in the adult mammalian central nervous system[J].Cell,1999,96(1):25-34.
[7]Gray JA, Grigoryan G,Virley D,et al.Conditionally immortalized,multipotential and muitifunctional neural stem cell lines as an approach to clinical transplantation[J].Cell Transplant,2000,9:153-168.
[8]Hasegawa K,Chang YW,Li H,et al. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury[J]. Exp Neurol,2005,193(2):394-410.
[9]Ogawa Y,Sawainoto K, Miyata T,et al. Transplantation of in vitroexpanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats[J].J Neurosci Res,2002,69(6):925-933.
[10]Woodhall E,West AK, Chuah ML. Culture olfactory ensheathing cells express nerve growth factor, brainderived neurotrophic factor, glial cell linederived neurotrophic factor and their receptors[J].Molecular Brain Research,2001,88:203-13.
[11]Fairless R,Barnett SC. Olfactory ensheathing cell:their role in central nervous system repair[J].Int J Biochem Cell Biol,2005,37(4):693-699.
[12]Hofstetter CP,Schwarz EJ,Hess D,et al.Marrow stromal cells form guilding strands in the injured spinal cord and promote recovery[J].PNAS,2002,99(4):2199-2204.
[13]Ankeny DP,Mctigue DM, Jakeman LB,et al.Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats[J].Exp Neurol,2004,190(1):17-31.
[14]De Haro J,Zurita M,Ayllon L,et al.Detection of 111 Inoxinelabeled bone marrow stromal cells after intravenous or intralesional administration in chronic paraplegic rats[J].Neurosci Lett,2005,377(1):7-11.
[15]Tobias CA,Shumsky JS, Shibata M,et al.Delayed grafting of BNDF and NT3 producing fibroblasts into the injured spinal cord stimulates sprouting,partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration[J].Exp Neurol.2003,184(1):97-113.
[16]李洪钧,刘海英,赵宗茂,等.人脐血干细胞移植促进大鼠脊髓损伤神经恢复[J].医学院学报,2004,26(1):38-42.
[17]Zhao ZM,Li HJ, Liu HY, et al. Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats[J].Cell Transplant,2004,13(2):113-122.
[18]PM Richardson,UM Mcguinness, AJ Aguayo,et al.Peripheral nerve autografts to the rat spinal cord:studies with axonal tracing methods[J].Brain Res,1982,237(1):147-162.
[19]H Cheng,S Almstrom,L Gimenez Liort,et al. Gait analysis of adult paraplegic rats after spinal cord repair[J].Exp Neurol,1997,148(2):544-557.
[20]Campos L,Ambron RT, Martin JH,et al.Bridge over troubled waters[J].Neuroreport,2004,15(18):2691-2694.
[21]Campos L,Meng Z,Hu G,et al. Engineering novel spinal circuits to promote recovery after spinal injury[J].J Neurosci,2004,24(9):2090-2101.
[22]Monnier PP,Sierra A, Schwab JM,et al. The Rho/ROCK pathway mediates neurite growthinhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar[J].Mol Cell Neurosci,2003,22:319-330.
[23]Moon LD,Asher RA, Rhodes KE,et al. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat Neurosci,2001,4:465-466.
[24]Skaper SD,Moore SE, Walsh FS,et al.Cell signaling cascades regulating neuronal growthpromoting and inhibitory cues[J].Prog Neurobio,2001,65:593-608.
[25]Ng CE,Tang BL. Nogos and the Nogo66 receptor:factors inhibiting CNS neuron regeneration[J].J Neurosci Res,2002,67(5):559-565.
[26]Diekmann H,Klinger M, Oertle T,et al.Analysis of the reticulon gene family demonstrates the absence of the neurite growth inhibitor Nogo A in fish[J].Mol Biol Evol,2005,api,27.
[27]Fournier A.Nogo and inhibitors of axon regeneration[J].Int Soc Neurochem,2003,85:30.
[28]De Castro R Jr,Tajrishi R, Claros J,et al. Differential responses of spinal axons to transection:influence of the NG2 proteoglycan[J].Exp Neurol,2005,192(2):299-309.
[29]Miura T,Tanaka S, Seichi A,et al.Partial functional recovery of paraplegic rat by adenovirusmediated gene delivery of constitutively active MEKI[J].Exp Neurol,2000,166(1):115-126.
[30]Martin Berry,Ana Maria Gonzalez, Wendy Clarke,et al.Sustained effects of geneactivated matrices after CN S injury[J].Molecular and Cellular Neuroscience,2001,17(4):706-716.
[31]Schwab JM,Guo L, Schluesener HJ, et al.Spinal cord injury induces early and persistent lesional P2X(4) receptor expression[J].J Neuroimmunol,2005,163(1-2):185-189.
[32]Tamura Mutsuhiro, Nakamura Masaya, Ogawa Yuto,et al.Targeted expression of antiapoptotic protein P35 in oligodendrocytes reduces delayed demyelination and functional impairment after spinal cord injury[J].Glia.2005,4(12).
[33]Roitbak T,Sykova E.Diffusion barriers evoked in the rat cortex by reactive astrogliosis[J].Glia,1999,28(1):40-48.
[34]CC Stichel,H Niermann, D D' Urso,et al. Basal membranedepleted scar in lesioned CNS:characteristics and relationships with regenerating axons[J].Neuroscience, 1999,93(1):321-333.
[35]Vikis HG,Li W,He Z,et al.The semaphoring receptor plexinB1 specifically interacts with active Rac in a liganddependent manner[J].Proc Natl Acad Sci,2000,97(1):457-462.
[36]刘铖,吴祖泽.胶质瘢痕与脊髓损伤修复[J].Foreign Medical Sciences Section on Neurology & Neurosurgery,2004,31(4):380-383.
[37]Conrad S,Schluesener HJ, Adibzahdeh M,et al. Spinal cord injury induction of lesional expression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells[J].J Neurosurg Spine,2005,2(3):319-326.
[38]Dong H,Fazzaro A,Xiang C,et al. Enhanced oligodendrocyte survival after spinal cord injury in Baxdeficient mice and mice with delayed Wallerian degeneration[J].J Neurosci,2003,23(25):8682-8691.
[39]黄其林,蔡文琴,张可成.反义胶原纤维酸性蛋白逆转录病毒对胶质瘢痕增生的影响[J].中华创伤杂志,2000,16(2):103-105.
[40]Abraham KE,McMillen D,Brewer KL.The effects of endogenous interleukin10 on gray matter damage and the development of pain behaviors following excitotoxic spinal cord injury in the mouse[J].Neuroscience,2004,124:945-952.
[41]Lavine M,Leslie R, Orla S. lfl only had a …… [J].Science.2002,295:995.
[42]Kim DH,Vaccaro AR, Henderson FC, et al. Molecular biology of cervical myelopathy and spinal cord injury:role of oligodendrocyte apoptosis[J].Spine J,2003,3:510-519.
[43]Pan W,Csernus B, Kastin AJ. Upregulation of P55 and P75 receptor mediating TNFalpha transport across the injured bloodspinal Cord barrier[J].J Mol Neurosci,2003,21(2):173-184.
[44]AdairKirk TL,Atkinson JJ, Kelley DG,et al.A chemotactic peptide from laminin alpha 5 functions as a regulator of inflammatory immune responses via TNF alphamediated signaling[J].J Immunol,2005,174(3):1621-1629.
[45]Byrnes KR,Waynant RW, Ilev IK, et al.Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury[J].Lasers Surg Med,2005,36(3):171-185.