医用有机化学几个重要教学环节探讨
【摘要】 结合教学实践,针对医学专业有机化学的特点,提出抓好几个重要教学环节的具体方法,灵活运用各种教学手段,取得良好的教学效果。
【关键词】 有机化学; 医学 教学
20世纪下半叶,生命迅速的标志是分子生物学的兴起。从分子水平上理解生物体和生命过程,实际上也就是从化学的观点去从事生命科学的研究。这种发展趋势不仅对有机化学提出了新的挑战,也使得医用有机化学在高等医学院校公共基础课中提到了更高的战略地位。医用有机化学所涉及的内容广泛,概念比较抽象,分子结构复杂,化学反应多,但是由于课时的限制,不能深入展开讲解,学生普遍感到难于理解,难于掌握。因此,作为授课教师,如何达到预期教学目的,取得良好的教学效果是笔者经常思索的问题。笔者近年来在承担该门课的教学工作中,积累了一些经验,认为如果能根据学生的实际水平,把握医用有机课程的特点,处理好教学中的几个重要环节,灵活运用各种教学手段,将会取得事半功倍的效果。
1 精心设计绪论课教学,激发学生学习兴趣
在高等医学院校,一般将《医用有机化学》放在大学一年级第二学期,与《医用有机化学》同时开设的还有《解剖学》等专业基础课程。许多学生只重视专业课,对学习化学兴趣不大。针对这种现状,笔者认为必须重视绪论课的教学,要认真钻研教材,精心备课,用心安排好绪论课的内容,要使学生充分认识到医学离不开化学,化学是医学发展的基础,学不好化学不可能成为一名合格的医务工作者,更无法攀登医学科技的高峰,激发学生学习有机化学的热情。
为此,笔者认为在绪论课上除了介绍有机化学的发展简史外,还要讲授以下两个方面内容:一是有机化学新的成就和贡献以及有机化学与生命科学的关系。这就要求我们不能局限于教材,备课时应该查阅,了解有机化学的前沿,激发学生学习兴趣。例如,可以通过列举上世纪80年代以来诺贝尔化学奖的主要工作来分析化学的发展方向。因为通常诺贝尔化学奖所表彰的工作是10年前甚至20年前完成的,但是这一评选则是以现代科学发展的眼光来进行的,一定程度上反映了对化学发展趋势和方向的看法。[1]值得注意的是直接与生命科学有关的化学诺贝尔奖至少有10项之多。近年来,随着人类的约80000条基因测序工作的完成,接下来的后基因工作就是寻找相应的小分子去调控这80000条基因,包括天然产物和它们的类似物去调控基因的表达过程或直接作用于基因本身。这些实例能够激发学生科学地认识到化学在生理过程、疾病的防治、诊断、中的重要作用。人类全面揭开遗传、变异繁殖、疾病、死亡等生命的奥秘必须依靠化学、医学、分子生物学家们共同努力。二是有机化学学科的特点、自己对学生的具体要求、以及授课计划等。使学生对教材知识结构有一个大概的了解,并且让学生明白应如何学习该课程。有机化学教材一般是按有机化合物的官能团体系划分章节,在每一章节,先学习命名,然后对其中一种或几种典型物质进行结构、性质、应用等内容的学习,并掌握它们同系物的相似性和性,有很强的系统性。医学专业学生要通过学习简单有机分子的反应,掌握有机化学的普遍原理,并初步具备联系体内复杂反应的能力。例如,醛与醇的亲核加成反应是糖的环状结构形成以及成苷反应的基础;含氮化合物的性质是蛋白质和核酸中涉及的一些反应的基础。这就要求我们要授予学生有机反应历程的理论知识,而不是孤立地陈述一个个具体的反应。因此绪论课上有必要介绍有机化学反应几大类型,使学生初步接触自由基、亲核试剂、亲电试剂等概念,对有机化学反应过程形成初步认识。
2 以“性质?结构”作为教学主线,提高学生学习效率
笔者在历年的教学中发现学生在学习有机化学时觉得有机化学内容太多,头绪太乱,难记难学。其实有机化学课程的中心内容就是有机化合物的结构和性质,因此学习有机化学的重点应该放在认识化学结构上,结构决定性质,性质反映结构,“结构?性质”就是掌握有机化学的“金钥匙”。
在各章的教学中, 讲解化学性质之前, 以“结构决定性质”为出发点, 对各类官能团的结构特征, 反应特性作全面的剖析, 使学生在接触具体性质之前, 对结构这一内因对化学性质的决定性影响先有一个轮廓认识。有了这种理论对实际的指导作用, 学生就会摆脱“不知其所以然”、“规律难寻”的状况。以《醛酮》一章的教学为例。醛、酮的分子中都含有官能团羰基,羰基碳原子为sp2杂化,碳氧双键由于碳氧的电负性不同而呈现较强的极性,云偏向氧原子一方,使氧原子上带部分负电荷,碳原子上带部分正电荷,亲核试剂首先进攻碳原子,发生亲核加成反应。由于羰基吸电子诱导效应的影响,使α?氢活泼,能发生一系列反应。由于醛羰基的极性比酮羰基的极性大,空间阻碍也较小,因而在相同条件下醛比酮一般较易起反应。醛、酮的反应与结构关系一般描述如下:
这样, 学生在学习醛酮的亲核加成、氧化、碘仿、羟醛缩合等反应时, 不仅不会有凌乱无序的感觉, 反而产生了刨根问底的求知欲,带着浓厚的兴趣,更加牢固地掌握繁琐的有机化学反应。
在讲授有机物性质和结构的过程中,还应注意引导学生运用有机结构理论,从空间位阻效应和效应等方面综合分析有机物结构特征,以及由此引起的化学性质的微妙差异。引导学生从更高层次上理解结构和性质的辩证关系,从而更加全面深刻地把握整个学科体系。例如, 在讲不对称烯烃与不对称试剂的亲电加成时, 如果不从电子效应来分析, 学生即使记住了马氏规则, 遇到下列情况时, 做错了题也不知为什么。CH3CH=CH2+HCl;CCl3CH=CH2+HCl;ClCH=CH2+HCl这三个反应都是单烯烃的加成反应,但是加成方式是一样还是不一样呢?影响上述加成反应的结果是共轭效应还是诱导效应?这时学生就可能就老师的提问,根据所学知识而给出种种可能的解释。再经教师指导性释疑,他们就会茅塞顿开,既明白了何种情况下是诱导效应或共轭效应在起作用,又提高了学生分析判断问题的能力。
3 突出重点,分散难点,运用多种教学手段教好立体化学
立体化学是有机化学的一个重要组成部分,是有机化学课程教学中的一个难点,但立体化学知识对于医学院校学生充分了解酶促反应、药物疗效等知识有着重大的基础作用,不仅要讲,还要把基本概念和关键问题讲深讲透。
适用医学专业的有机化学教科书一般都设有专章进行讨论,差异在于把这一章放在全书中的哪一部分,是否在其他章节提前介绍基本概念和理论。目前我们选用的是卫生部规划教材吕以仙主编的《有机化学》,在讨论烃类化合物之后便安排立体化学这一章,并且在烃的各章中就开始介绍一些有关的立体概念,例如烷烃和环烷烃的构象分析,烯烃和环烷烃的顺反异构现象以及烯烃加成反应的立体化学等[2]。这种安排有利于教学,使学生在开始接触简单有机物的分子时就树立一个正确的立体概念。在立体化学专章中是以旋光异构现象为重点,对这方面的基础知识不仅要系统介绍,还要注意同其他章节或其他课程的配合。对已经学过的有关内容,可以扼要地再提一下,加深学生对这些基本概念和基本原理的印象;对需要留待以后章节中才讨论的内容,有些也需要及时地予以指出,为后面的讲授埋下一条伏线。例如在引出本章重点内容旋光异构现象之前扼要地小结一下烷烃、环烷烃及烯烃的构象及构型问题,就会有利于全面了解立体异构现象的概况,对问题的提出也感到比较,有利于引导学生进一步认识分子立体结构的重要性。
为了使医学生能学好立体化学知识,我们使用了大量的分子模型,使学生能比较直观地学习,同时我们充分利用多媒体教学手段,把化学结构绘图软件Chemwin与Powerpoint结合起来,将立体感极强的分子立体图形展示给学生。通过这些手段,我们使学生较快较好地掌握了立体化学的基础知识。我们在基础课教学中主要使用球棍式模型(Kekule模型),这种模型代表价键的小棍可适当选择其长度,便于观察分子中各原子在空间的相对位置,学生可以获得立体异构体的清晰表象,认识到立体异构体分子中各基团在空间的排列本质。但这种模型构成的分子与真实分子的形象相差甚大,因此在适当时机还需要用Stuart模型做一些典型化合物的分子结构进行示范和比较,使两种模型取长补短,更有利于帮助学生认识分子结构的立体形象[3]。
理解概念力求准确,这是学好立体异构的关键。对于概念的模糊或误解往往会导致错误的判断。例如:“旋转”和“翻转”这两个概念,顺反异构体产生的条件之一是“分子中存在不能自由旋转的因素”,如果误解为“翻转”,分子中各基团在空间的相对位置无任何变化,不能产生产生顺反异构体。旋光异构体的费歇尔投影式不能离开纸平面“翻转”,只能在纸平面上“旋转”偶数倍构型保持不变。如果“翻转”,使得费歇尔投影式表示旋光异构体的基团前后位置交换,其实质是改变了旋光异构体的构型,恰好变成它的对映体,所以不能“翻转”。由此看来,准确理解概念至关重要,来不得半点马虎。此外,本章中还要注意结构和构造、构型和构象、手性和手性碳、顺/反和Z/E、D/L 和R/S等概念的区别和联系。
诚然,在医用有机化学的教学过程中,有许多方面的问题值得我们探索、研究、解决。而每位教师因各自的教学方式不同,对上述问题可能有不同的理解。因此在这里提出的几个问题仅仅是笔者通过几年的教学实践出来的,供大家商讨,它对提高学生的学习兴趣,增强其学习主动性,改善教学效果均有一定作用。
【】
1 吴毓林,陈耀全.化学迈向辉煌的新世纪.化学通报,1999,62(1):3~9.
2 吕以仙,主编.有机化学.人民卫生出版社,2004,18~104.
3 邢其毅,主编.基础有机化学示范教学.北京大学出版社,1983,77~116.