人突变型低氧诱导因子1α腺病毒载体的构建及鉴定
作者:郭寿贵,吴平生,王月刚,傅锐斌
【关键词】 腺病毒
Construction and identification of human mutant hypoxia inducible factor1α adenovirus vector
【Abstract】 AIM: To construct adenovirus vector containing the mutant HIF1α gene and to study the effect of mutant hypoxia inducible factor1α on the angiogenesis of coronary heart disease. METHODS: Human mutant HIF1α cDNA obtained from the plasmid pcDNA3.1(+)HIF1α was cloned into plasmid pShuttle2. The expression cassette containing mutant HIF1α cDNA was obtained from the recombinant pShuttle2 with double digestion of PISce I and ICeu I and then ligated to AdenoX Viral DNA with in vitro ligation. The recombinant adenoviral plasmid was identified and transfected into the adenoviral packaging cell HEK293 by lipofectamine2000 mediated gene transfer method to pack the virus. The recombinant adenovius was confirmed by polymerase chain reaction (PCR) and the titer was determined. RESULTS: The recombinant pAdenoHIF1α was correctly constructed and confirmed by restriction endonuclease analysis and DNA sequencing analysis. The transfected HEK293 cells were lysed by freezethawing to obtain the recombinant adenovirus in the lysate. The PCR product of the lysate confirmed the presence of recombinant adenovirus. The viral titer was 2×1012 pfu/L. CONCLUSION: The recombinant adenovirus containing the mutant HIF1α gene has been successfully constructed, which paves the way for mutant HIF1α gene therapy of coronary heart disease.
【Keywords】 hypoxia inducible factor1α; mutant; adenovirus vector; gene therapy
【摘要】 目的: 构建人突变型低氧诱导因子1(HIF1)α腺病毒表达载体,研究人突变型HIF1α基因对冠心病的血管新生作用. 方法: 采用分子克隆技术,由pcDNA3.1(+)HIF1α(突变型)质粒获得突变型HIF1α cDNA,克隆到穿梭质粒pShuttle2,以PISce I和ICeu I双酶切重组穿梭质粒,获得含有突变型HIF1α cDNA的表达盒,通过体外连接法与线性化的腺病毒骨架质粒AdenoX Viral DNA连接,重组成pAdenoHIF1α腺病毒质粒,经酶切及测序鉴定正确后,在HEK293细胞中包装成为重组AdenoHIF1α腺病毒,并进行PCR鉴定及滴度测定. 结果: 经酶切鉴定及基因测序证实重组腺病毒质粒构建成功,包装后冻融细胞的上清PCR检测重组腺病毒包装成功,病毒滴度为2×1012 pfu/L. 结论: 成功构建重组腺病毒AdenoHIF1α(突变型),为冠心病的突变型HIF1α基因研究奠定基础.
【关键词】 低氧诱导因子1α; 突变; 腺病毒; 基因治疗
0引言
低氧诱导因子1 (hypoxiainducible factor 1,HIF1)是一种在体内广泛存在的由低氧、钴等诱导细胞产生的具有转录活性的核蛋白,由α和β亚基组成,在低氧应答反应中起关键性作用,它能与靶基因的缺氧反应元件(hypoxia response element,HRE)结合调控血管内皮生长因子(vascular endothelial growth factor,VEGF)等一系列靶基因的转录,对血管新生等起极其关键的调节作用. HIF1α受低氧诱导,决定HIF1的活性,然而常氧状态下,其氧依赖降解区(oxygen dependent degradation domain,ODDD)内564位脯氨酸残基Pro564发生羟基化,迅速被降解. 为此我们在已定点突变其Pro564为丙氨酸(Ala)基础上,构建重组人突变型HIF1α腺病毒载体,以进一步研究常氧条件下该突变型基因表达及对冠心病的血管新生作用.
1材料和方法
1.1材料
1.1.1试剂、试剂盒各种限制性内切酶PacⅠ,PISce I,ICeu I等及T4 DNA连接酶、Taq DNA聚合酶、XGal分别购自Takara,NEB等公司;DMEM培养基(Gibco),胎牛血清(PAA),转染试剂Lipofectamine 2000(Invitrogen),超纯质粒提取试剂盒(Qiagen).
1.1.2质粒、菌株、细胞系等AdenoXTM Adenoviral Expression Systems(BD.Clontech):包括有pShuttle2, pShuttle2laZ, AdenoXTM Viral DNA等,重组质粒pcDNA3.1(+)HIF1α(突变型)(本室构建),大肠杆菌DH5α(本室保存),HEK293细胞(中科院上海细胞所).
1.1.3引物HIF1αcDNA片段引物(由博亚公司设计并合成),上游引物:5′GACACAGAAGCAAAGAACCC3′,下游引物:5′TCAAAGCGACAGATAACACG3′,PCR产物片段长460 bp. BD.Clontech所提供引物(两个引物分别与穿梭质粒表达盒及骨架质粒的部分序列结合),上游引物:5′TAGTGTGGCGGAAGTGTGATGTTGC3′,下游引物:5′AGATCTGAGCTTTCGCTACC3′,PCR产物片段长287 bp.
1.2方法
1.2.1重组穿梭质粒构建以NheⅠ,ApaⅠ双酶切pcDNA3.1(+)HIF1α(突变型,下同)及pShuttle2,胶回收突变型HIF1α片段及pShuttle2线性化大片段,连接后转化感受态DH5α,于卡那霉素抗性LB平板上筛选单菌落扩增,提取质粒,行酶切及PCR鉴定.
1.2.2酶切连接法重组腺病毒骨架质粒以PISce I,ICeu I双酶切pShuttle2HIF1α,胶回收含HIF1α的表达盒片段,与线性化的腺病毒骨架质粒AdenoXTM Viral DNA作连接,转化感受态DH5α,氨苄抗性LB平板筛选,挑12~16个单菌落扩增并作菌液PCR鉴定,提取重组腺病毒质粒pAdenoHIF1α,予XhoⅠ酶切鉴定;以 PISce I,ICeu I双酶切pShuttle2laZ,胶回收含laZ基因的表达盒片段,与AdenoXTM Viral DNA作连接,方法基本同上,但菌落筛选时每个平皿涂IPTG 100 μL及XGal 20 μL,挑出蓝色菌落,重组质粒称pAdenolaZ.
1.2.3重组腺病毒包装以含100 mL/L胎牛血清的DMEM培养HEK293细胞,转染前一日细胞传代,细胞数(0.5~1)×106/(60 mm平皿),转染时细胞汇合率在70%左右;重组腺病毒质粒pAdenoHIF1α约4~5 μg以PacⅠ线性化,纯化后50 μL灭菌三蒸水重溶,以Lipofectamine2000转染HEK293细胞,约10 d左右大部分细胞出现细胞病变效应(CPE)后收集细胞,重悬于PBS 500 μL,-70℃~37℃反复冻融3次,离心收集上清,此称为病毒原液,-20℃保存. 同法以pAdenolaZ转染HEK293细胞作对照,转染48 h后固定细胞,作原位XGal染色,观察转染效率.
1.2.4病毒扩增、滴度测定及鉴定取上述细胞裂解液250 μL重新感染在60 mm培养皿中培养的HEK293细胞,如上待大部分细胞CPE完全形成后,收集细胞,PBS重悬,冻融细胞,离心收集上清冻存;采用CPE法(EndPoint Dilution Assay)测定病毒滴度,重组病毒称AdenoHIF1α. 取2 μL病毒原液,行PCR鉴定.
2结果
2.1重组穿梭质粒pShuttle2HIF1α的鉴定目的基因自pcDNA3.1(+)HIF1α酶切后与经同样双酶切的穿梭质粒pShuttle2连接成功,NheⅠ及ApaⅠ单、双酶切鉴定,ApaⅠ单酶切片段大小约6500 bp,双酶切两个片段大小分别为4000 bp,2500 bp左右(Fig 1),酶切鉴定正确;以HIF1α的一对引物行PCR鉴定,扩增出一约460 bp的DNA(Fig 2),与预期值一致,测序后与GenBank的HIF1αcDNA序列比对显示564位脯氨酸密码子CCC突变为丙氨酸密码子GCC(下划线处).
2.2重组腺病毒载体pAdenoHIF1α鉴定提取重组腺病毒质粒pAdenoHIF1α以XhoⅠ酶切(Fig 3),酶切片段有14 500,8046,4300和2465 bp,符合预期,鉴定正确,以BD Clontech公司所提供的引物行PCR鉴定,扩增出287 bp的DNA片段(Fig 4),与预期值一致.
2.3重组腺病毒载体pAdenolaZ转染293细胞后XGal原位染色结果pAdenolaZ转染293细胞后XGal原位染色,显示近20%左右的转染细胞染成蓝色(Fig 5).
2.4重组腺病毒AdenoHIF1α的鉴定及滴度测定重组腺病毒AdenoHIF1α以BD Clontech公司所提供的引物行PCR鉴定,结果同Fig 4,成功扩增出287 bp的目的条带,说明重组病毒成功. 测病毒原液滴度为3×1010 pfu/L,扩增后的病毒滴度为2×1012 pfu/L.
3讨论
腺病毒具感染谱广,高病毒滴度及感染效率,不引起插入突变等优点,是常用的基因转移载体之一. 我们采用的腺病毒载体是E1/E3区同时去除的复制缺陷型,缺失E1区的腺病毒不具复制能力. 采用体外连接的重组方法,首先将目的基因连接到穿梭载体pShuttle2的hCMV启动子和SV40多聚腺苷酸尾之间,通过酶切获得含目的基因的表达盒片断,直接与线性化的病毒骨架质粒连接,然后在能反式提供E1基因产物的293细胞中包装出具有复制能力的重组腺病毒. 此种构建方法比常用的细菌内同源重组法,具有高效、快速的优点. 大量扩增重组病毒后行氯化铯梯度超速离心得到高纯度和滴度的重组腺病毒,可用于体内试验.
促血管新生因子研究较多的有VEGF,FGF等,已有Ⅱ期临床实验证实携带VEGF,FGF等基因的腺病毒载体可促进性血管新生而改善缺血性心脏病患者的临床症状[1-3]. 然而VEGF治疗可导致新生血管不成熟、组织水肿、血管渗漏,甚至可能促进动脉硬化进展、血管瘤形成及侧支循环的减少,FGF则与蛋白尿有关[4,5]. 近年发现,HIF1α可诱导生理功能完整的血管新生,其通过与靶基因HRE结合调控下游超过50种基因的转录,包括VEGF及其受体等多种促血管生长、发育的基因. 目前在冠心病等涉及治疗性血管新生的疾病研究中,HIF1α被认为是最具有临床治疗前景的基因之一[6,7]. 临床前期研究表明其可促进缺血侧支血管的灌注、促进血管新生,在模拟的缺血再灌注损伤中对培养的心肌细胞具保护作用[8,9]. 然而常氧状态下HIF1α容易降解,其 ODD区的Pro564在脯氨酰羟化酶作用下羟基化成羟脯氨酸残基,介导ODD区与E3泛素连接酶复合体组分von HippelLindau 肿瘤抑制蛋白(pVHL)相结合,进而启动HIF1α经泛素蛋白酶体途径降解;低氧状态下脯氨酰羟化酶活性受到抑制,Pro564羟基化反应受阻,导致HIF1α降解途径中断,细胞内HIF1α水平增加[10,11]. 通过对Pro564的定点突变,使得pVHL不能与HIF1α ODD区稳定结合,常氧下HIF1α可得到稳定表达. 我们在业已完成定点突变Pro564为Ala564基础上,成功构建人突变型HIF1α重组腺病毒载体,解决了常氧下HIF1α基因表达困难的问题,为其体内外研究开辟了新途径,为进一步研究其对冠心病的血管新生作用及以后的临床应用奠定了基础.
【】
[1] Hedman M, Hartikainen J, Syvanne M, et al. Safety and feasibility of catheterbased local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and instent restenosis and in the treatment of chronic myocardial ischemia: Phase II results of the Kuopio Angiogenesis Trial (KAT)[J]. Circulation, 2003;107(21):2677-2683.
[2] Lederman RJ, Mendelsohn FO, Anderson RD, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor2 for intermittent claudication (the TRAFFIC study): A randomised trial[J]. Lancet, 2002; 359 (9323):2053-2058.
[3] Grines CL, Watkins MW, Helmer G, et al. Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris[J]. Circulation, 2002;105(11): 1291-1297.
[4] Lee RJ, Springer ML. VEGF gene delivery to myocardium: Deleterious effects of unregulated expression[J]. Circulation, 2000;102(8): 898-901.
[5] Fam NP, Verma S, Kutryk M, et al. Clinician guide to angiogenesis[J]. Circulation, 2003; 108(21):2613-2618.
[6] Tarzami ST, Singh JP. Pharmacological revascularisation in coronary and peripheral vascular disease[J]. Expert Opin Investig Drugs, 2004;13(10):1319-1326.
[7] Giaccia A, Siim BG, Johnson RS. HIF1 as a target for drug development[J]. Nat Rev Drug Discov, 2003;2(10):803-811.
[8] Karen A,KouGi Shyu. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF1alpha/VP16 hybrid transcription factor[J]. Circulation, 2000;102(18):2255-2261.
[9] Date T, Mochizuki S, Belanger AJ, et al. Expression of constitutively stable hybrid hypoxiainducible factor1alpha protects cultured rat cardiomyocytes against simulated ischemiareperfusion injury[J]. Am J Physiol Cell Physiol, 2005;288(2):C314-C320.
[10] Min JH, Yang H, Ivan M, et al. Structure of an HIF1alphapVHL complex: Hydroxyproline recognition in signaling[J]. Science, 2002;296(5574):1886-1889.
[11] Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIFalpha to the von HippelLindau ubiquitylation complex by O2regulated prolyl hydroxylation[J]. Science, 2001;292(5516):468-472.