基于最优博弈策略的信贷市场激励契约设计
来源:岁月联盟
时间:2010-06-25
论文摘要:信贷市场中,获得贷款后基于自身利益的驱动会产生道德风险,从而加大了银行信贷风险。本文建立了银企博弈模型,得出银行可以将审核概率控制在一定阀值上,从而降低企业的道德风险。在此基础上,设计了银行对借款企业的激励契约,得出抵押物价值和贷款利率的最优线性关系。
随着我国业的不断开放,我国商业银行面临着日益激烈的竞争,借款企业的道德风险已经成为银行较高不良资产率的主要原因之一发放贷款后,由于信息不对称,银行往往无法对企业进行有效监控,企业可能做出损害银行利益的行为,这就是企业道德风险。
银企博弈模型
交易双方为银行和借款企业,假设两者均风险中立。博弈顺序如下:借贷双方针对某一项目签订借贷合同,贷款额度为B。合同规定抵押价值Q以及贷款利率i等,显然Q>B。企业可选择“不改变资金用途”或“改变资金用途”两种纯策略,对应的项目失败概率t1和t2,显然,t10,高风险意味着高收益)。银行收益始终为r,有r=iB。项目失败后,银行由于存在审核成本,故其策略有“审核”与“不审核”,对应概率分别为α和1-α,审核成本为C。如果审查出企业“改变资金用途”,则银行没收抵押后并给予企业惩罚π,其中可以是信用等级的降低等。
双方收益函数:企业不改变资金用途,如果项目成功,企业和银行收益分别为R-r 和r;如果项目失败并且银行选择审核,双方收益分别为B-Q和Q-B-C,如果银行选择不审,双方收益分别为B-Q和Q-B。企业改变资金用途,如果项目成功,企业和银行收益分别为R+Δ-r和r;如果项目失败并且银行选择审核,双方收益分别为B-Q-π和π+Q-B-C,如果银行选择不审,双方收益分别为B-Q和Q-B。
博弈的均衡分析
如果一个混合策略是企业的最优选择,那么意味着企业是否改变资金用途的期望收益无差异,即:(1-t1)(R-r)+t1[α(B-Q)+(1-α)(B-Q)]=(1-t2)(R-r+Δ)+t2[α(B-Q-π)+(1-α)(B-Q)],得出:
同理,如果一个混合策略是银行的最优选择,那么意味着银行审核与不审核之间的期望收益是无差异的。引入一个条件概率λ(c/f),表示项目失败后银行认为企业改变资金用途的概率,由贝叶斯法则得: 这种情况下银行审核与不审核的期望收益相同,即:λ(c/f)(π+Q-B-C)+[1-λ(c/f )](Q-B-C)=Q-B,得出:
因此,所求的α和p即为所求纳什均衡点。这表明当银行审核概率低于α时,企业最优策略是改变资金用途;当银行认为企业改变资金用途的概率小于p时,考虑到审核成本,银行选择不去审核。所以,银行可以将审核概率控制在一定阀值之上,就能够有效控制道德风险。
激励契约设计
银行在设计契约时,应理性预期到双方的博弈策略选择及其各种局势的支付,进而设计激励契约。设计契约如下:
{(1-p)(1-t1)r+(1-p)t1[α(B-Q-C)+(1-α)(Q-B )]+p (1-t2)r+pt2[α(π+Q-B )+(1-α)(Q-B )]} (1)
s.t(1-t1)(R-r)+t1(B-Q)≥0(2)
(1-t1)(R-r)+t1(B-Q)≥(1-t2)(R-r+Δ)+t2[α(B-Q-π)+(1-α)(B-Q)] (3)
r=iB (4)
银行的最优策略是使自身期望收益即(公式1)达到最大;同时应满足不改变资金用途的企业的参与约束(公式2);为激励企业不改变资金用途,还应满足激励约束(公式3),即不改变资金用途的企业获得的收益应大于改变资金用途的企业。(公式4)为r与B的关系。
添加参与约束因子β和激励约束因子γ构造拉格朗日函数,得出β=1,γ=1-p。
当γ≠0,即p≠1时,因此约束条件(2)和(3)取等号,解之得:;当γ=0,即p =1时,即银行认为企业一定会改变资金用途,则银行一定会审核,即α=1。
由结果可知,在最优博弈策略的基础上,银行利润最大时其最优抵押物价值和贷款利率存在以上线性关系。一般,当贷款额度和贷款利率一定时,抵押物价值与项目失败率成反比,因此,银行可以通过设计不同的抵押物价值要求的契约来对进行激励。
:
1.葛长有.信息不对称情况下信贷市场的道德风险模型.统计与决策,2006
2.庞文瑾.信贷风险管理中的道德风险及其防范模型.与,2002